Informatics solutions for high-throughput proteomics.

The success of mass-spectrometry-based proteomics as a method for analyzing proteins in biological samples is accompanied by challenges owning to demands for increased throughput. These challenges arise from the vast volume of data generated by proteomics experiments combined with the heterogeneity in data formats, processing methods, software tools and databases that are involved in the translation of spectral data into relevant and actionable information for scientists. Informatics aims to provide answers to these challenges by transferring existing solutions from information management to proteomics and/or by generating novel computational methods for automation of proteomics data processing.

[1]  Chris F. Taylor,et al.  A common open representation of mass spectrometry data and its application to proteomics research , 2004, Nature Biotechnology.

[2]  Carole A. Goble,et al.  Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt , 2004, SEMWEB.

[3]  Tao Xu,et al.  Atlas – a data warehouse for integrative bioinformatics , 2005, BMC Bioinformatics.

[4]  Rolf Apweiler,et al.  Common interchange standards for proteomics data: Public availability of tools and schema. Report on the Proteomic Standards Initiative Workshop, 2nd Annual HUPO Congress, Montreal, Canada, 8–11th October 2003 , 2004, Proteomics.

[5]  Ralf J. O. Torgrip,et al.  Peak alignment using reduced set mapping , 2003 .

[6]  Rovshan G Sadygov,et al.  Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book , 2004, Nature Methods.

[7]  Lewis Y. Geer,et al.  DBParser: web-based software for shotgun proteomic data analyses. , 2004, Journal of proteome research.

[8]  Carole A. Goble,et al.  Guest editors' introduction to the special section on scientific workflows , 2005, SGMD.

[9]  J. Listgarten,et al.  Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[10]  J. Yates,et al.  A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. , 2003, Analytical chemistry.

[11]  Matjaz B. Juric,et al.  Business Process Execution Language for Web Services BPEL and BPEL4WS 2nd Edition , 2006 .

[12]  Hua Lin,et al.  Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum , 2004, Bioinform..

[13]  B. Cargile,et al.  Potential for false positive identifications from large databases through tandem mass spectrometry. , 2004, Journal of proteome research.

[14]  Peder Thusgaard Ruhoff,et al.  Experimental Peptide Identification Repository (EPIR) , 2004, Molecular & Cellular Proteomics.

[15]  Frank Leymann,et al.  Web services and business process management , 2002, IBM Syst. J..

[16]  R. Aebersold,et al.  A uniform proteomics MS/MS analysis platform utilizing open XML file formats , 2005, Molecular systems biology.

[17]  M. Baldwin Protein Identification by Mass Spectrometry , 2004, Molecular & Cellular Proteomics.

[18]  Matthew R. Pocock,et al.  Taverna: a tool for the composition and enactment of bioinformatics workflows , 2004, Bioinform..

[19]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[20]  T. Hunkapiller,et al.  Peptide mass maps: a highly informative approach to protein identification. , 1993, Analytical biochemistry.

[21]  Matej Oresic,et al.  Processing methods for differential analysis of LC/MS profile data , 2005, BMC Bioinformatics.

[22]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[23]  Robertson Craig,et al.  The use of proteotypic peptide libraries for protein identification. , 2005, Rapid communications in mass spectrometry : RCM.

[24]  S. Hanash Disease proteomics : Proteomics , 2003 .

[25]  J. Yates,et al.  Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. , 1995, Analytical chemistry.

[26]  Robert Stevens,et al.  {myGrid} and the drug discovery process , 2004 .

[27]  F. McLafferty,et al.  Automated reduction and interpretation of , 2000, Journal of the American Society for Mass Spectrometry.

[28]  P. Højrup,et al.  Use of mass spectrometric molecular weight information to identify proteins in sequence databases. , 1993, Biological mass spectrometry.

[29]  David Haussler,et al.  The UCSC Proteome Browser , 2004, Nucleic Acids Res..

[30]  Petricoin Ef rd,et al.  The promise of proteomics , 2003, Nature.

[31]  Matjaz B. Juric,et al.  Business process execution language for web services , 2004 .

[32]  Ruedi Aebersold,et al.  The Need for Guidelines in Publication of Peptide and Protein Identification Data , 2004, Molecular & Cellular Proteomics.

[33]  J. A. Taylor,et al.  Informatics for protein identification by mass spectrometry. , 2005, Methods.

[34]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[35]  R. Beavis,et al.  A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. , 2003, Analytical chemistry.

[36]  Cathy H. Wu,et al.  Protein sequence databases. , 2004, Current opinion in chemical biology.

[37]  Ljiljana Paša-Tolić,et al.  An accurate mass tag strategy for quantitative and high‐throughput proteome measurements , 2002, Proteomics.

[38]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[39]  A. Masselot,et al.  High‐performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics , 2004, Proteomics.

[40]  Nichole L. King,et al.  Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry , 2004, Genome Biology.

[41]  R. Aebersold,et al.  Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry , 2001, Nature Biotechnology.

[42]  Sanjeev Khanna,et al.  Why and Where: A Characterization of Data Provenance , 2001, ICDT.

[43]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[44]  M. Gorenstein,et al.  Quantitative proteomic analysis by accurate mass retention time pairs. , 2005, Analytical chemistry.

[45]  Mark S. Boguski,et al.  Biomedical informatics for proteomics , 2003, Nature.

[46]  P. Højrup,et al.  Rapid identification of proteins by peptide-mass fingerprinting , 1993, Current Biology.

[47]  The statistical significance of protein identification results as a function of the number of protein sequences searched. , 2004, Journal of proteome research.

[48]  M. Tyers,et al.  From genomics to proteomics , 2003, Nature.

[49]  Hugh M. Cartwright,et al.  SpecAlign - processing and alignment of mass spectra datasets , 2005, Bioinform..

[50]  P. Kearney,et al.  Bioinformatics Meets Proteomics - Bridging the Gap between Massspectrometry Data Analysis and Cell Biology , 2003, J. Bioinform. Comput. Biol..

[51]  Xiang Zhang,et al.  Data pre-processing in liquid chromatography-mass spectrometry-based proteomics , 2005, Bioinform..

[52]  R. Aebersold,et al.  Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. , 2003, Analytical chemistry.

[53]  Daniel Figeys,et al.  Definition and characterization of a "trypsinosome" from specific peptide characteristics by nano-HPLC-MS/MS and in silico analysis of complex protein mixtures. , 2004, Journal of proteome research.

[54]  A. Nesvizhskii,et al.  Experimental protein mixture for validating tandem mass spectral analysis. , 2002, Omics : a journal of integrative biology.

[55]  T. Shaler,et al.  Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. , 2003, Analytical chemistry.

[56]  Alexandre V. Podtelejnikov,et al.  Comparison of different search engines using validated MS/MS test datasets , 2005 .

[57]  Gavin MacBeath,et al.  Protein microarrays and proteomics , 2002, Nature Genetics.

[58]  Marshall W. Bern,et al.  Automatic Quality Assessment of Peptide Tandem Mass Spectra , 2004, ISMB/ECCB.