Dopaminergic Modulation of the Striatal Microcircuit: Receptor-Specific Configuration of Cell Assemblies

Selection and inhibition of motor behaviors are related to the coordinated activity and compositional capabilities of striatal cell assemblies. Striatal network activity represents a main step in basal ganglia processing. The dopaminergic system differentially regulates distinct populations of striatal medium spiny neurons (MSNs) through the activation of D1- or D2-type receptors. Although postsynaptic and presynaptic actions of these receptors are clearly different in MSNs during cell-focused studies, their activation during network activity has shown inconsistent responses. Therefore, using electrophysiological techniques, functional multicell calcium imaging, and neuronal population analysis in rat corticostriatal slices, we describe the effect of selective dopaminergic receptor activation in the striatal network by observing cell assembly configurations. At the microcircuit level, during striatal network activity, the selective activation of either D1- or D2-type receptors is reflected as overall increases in neuronal synchronization. However, graph theory techniques applied to the transitions between network states revealed receptor-specific configurations of striatal cell assemblies: D1 receptor activation generated closed trajectories with high recurrence and few alternate routes favoring the selection of specific sequences, whereas D2 receptor activation created trajectories with low recurrence and more alternate pathways while promoting diverse transitions among neuronal pools. At the single-cell level, the activation of dopaminergic receptors enhanced the negative-slope conductance region (NSCR) in D1-type-responsive cells, whereas in neurons expressing D2-type receptors, the NSCR was decreased. Consequently, receptor-specific network dynamics most probably result from the interplay of postsynaptic and presynaptic dopaminergic actions.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  J. Bargas,et al.  Spontaneous Voltage Oscillations in Striatal Projection Neurons in a Rat Corticostriatal Slice , 2003, The Journal of physiology.

[3]  J. Berke Uncoordinated Firing Rate Changes of Striatal Fast-Spiking Interneurons during Behavioral Task Performance , 2008, The Journal of Neuroscience.

[4]  Isaac Meilijson,et al.  Distributed synchrony in a cell assembly of spiking neurons , 2001, Neural Networks.

[5]  H. Eichenbaum,et al.  Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats , 2004, Neuron.

[6]  Xin Jin,et al.  Frontiers in Integrative Neuroscience Integrative Neuroscience , 2022 .

[7]  Daniel Lehmann,et al.  Modeling Compositionality by Dynamic Binding of Synfire Chains , 2004, Journal of Computational Neuroscience.

[8]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[9]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[10]  J. Bargas,et al.  Dopaminergic Modulation of Axon Collaterals Interconnecting Spiny Neurons of the Rat Striatum , 2003, The Journal of Neuroscience.

[11]  E. Vaadia,et al.  Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. , 1996, Journal of neurophysiology.

[12]  Rui M. Costa,et al.  Rapid Alterations in Corticostriatal Ensemble Coordination during Acute Dopamine-Dependent Motor Dysfunction , 2006, Neuron.

[13]  D. Lovinger,et al.  Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill , 2009, Nature Neuroscience.

[14]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[15]  Paul Greengard,et al.  Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors , 2010, Proceedings of the National Academy of Sciences.

[16]  J. Horvitz,et al.  Dopaminergic Mechanisms in Actions and Habits , 2007, The Journal of Neuroscience.

[17]  M. Delong,et al.  Inversion of Dopamine Responses in Striatal Medium Spiny Neurons and Involuntary Movements , 2008, The Journal of Neuroscience.

[18]  W. Schultz,et al.  Behavior-related activity of primate dopamine neurons. , 1994, Revue neurologique.

[19]  A. Carlsson Biochemical and pharmacological aspects of Parkinsonism. , 1972, Acta neurologica Scandinavica. Supplementum.

[20]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[21]  H. Robertson Synergistic Interactions of D1- and D2-Selective Dopamine Agonists in Animal Models for Parkinson’s Disease: Sites of Action and Implications for the Pathogenesis of Dyskinesias , 1992, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[22]  K. Harris Neural signatures of cell assembly organization , 2005, Nature Reviews Neuroscience.

[23]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[24]  Yuji Ikegaya,et al.  Calcium imaging of cortical networks dynamics. , 2005, Cell calcium.

[25]  N. Matsuki,et al.  Metastability of Active CA3 Networks , 2007, The Journal of Neuroscience.

[26]  Damian J. Wallace,et al.  Chasing the cell assembly , 2010, Current Opinion in Neurobiology.

[27]  A M Graybiel,et al.  Basal ganglia: New therapeutic approaches to Parkinson's disease , 1996, Current Biology.

[28]  M. Stopfer,et al.  Encoding a temporally structured stimulus with a temporally structured neural representation , 2005, Nature Neuroscience.

[29]  J. Bargas,et al.  D2 Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca2+ Currents and Excitability via a Novel PLCβ1–IP3–Calcineurin-Signaling Cascade , 2000, The Journal of Neuroscience.

[30]  E. Vaadia,et al.  Spike Synchronization in the Cortex-Basal Ganglia Networks of Parkinsonian Primates Reflects Global Dynamics of the Local Field Potentials , 2004, The Journal of Neuroscience.

[31]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[32]  V. Jayaraman,et al.  Intensity versus Identity Coding in an Olfactory System , 2003, Neuron.

[33]  Kenji F. Tanaka,et al.  Functional Connectome of the Striatal Medium Spiny Neuron , 2011, The Journal of Neuroscience.

[34]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[35]  R. Diestel Graph Decompositions: A Study in Infinite Graph Theory , 1990 .

[36]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[37]  A. Graybiel,et al.  Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories , 2005, Nature.

[38]  J. Bargas,et al.  Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons. , 2009, Journal of neurophysiology.

[39]  Jean-Pierre Rospars,et al.  REVIEW ARTICLE: Neuronal coding and spiking randomness , 2007, The European journal of neuroscience.

[40]  M. Ann The Basal Ganglia and Cognitive Pattern Generators , 2005 .

[41]  Visualizing striatal networks. Focus on: "Encoding network states by striatal cell assemblies". , 2008, Journal of neurophysiology.

[42]  Barbara Hammer,et al.  Compositionality in Neural Systems , 2002 .

[43]  Luis Carrillo-Reid,et al.  Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses , 2007, Proceedings of the National Academy of Sciences.

[44]  G. Arbuthnott,et al.  Plasticity of Synapses in the Rat Neostriatum after Unilateral Lesion of the Nigrostriatal Dopaminergic Pathway , 1998, The Journal of Neuroscience.

[45]  D James Surmeier,et al.  Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson's Disease , 2008, The Journal of Neuroscience.

[46]  J. Tepper,et al.  Differential Dopaminergic Modulation of Neostriatal Synaptic Connections of Striatopallidal Axon Collaterals , 2009, The Journal of Neuroscience.

[47]  M. Martin-Iverson,et al.  Synergistic behavioural effects of dopamine D1 and D2 receptor agonists are determined by circadian rhythms. , 1992, European journal of pharmacology.

[48]  G. Robertson,et al.  Synergistic effects of D1 and D2 dopamine agonists on turning behaviour in rats , 1986, Brain Research.

[49]  J. Bargas,et al.  Dynamics of the Parkinsonian Striatal Microcircuit: Entrainment into a Dominant Network State , 2010, The Journal of Neuroscience.

[50]  Paul H. E. Tiesinga,et al.  A New Correlation-Based Measure of Spike Timing Reliability , 2002, Neurocomputing.

[51]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[52]  Jean-Michel Deniau,et al.  Distinct Patterns of Striatal Medium Spiny Neuron Activity during the Natural Sleep–Wake Cycle , 2006, The Journal of Neuroscience.

[53]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[54]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[55]  Paolo Calabresi,et al.  Dopamine-mediated regulation of corticostriatal synaptic plasticity , 2007, Trends in Neurosciences.

[56]  S. Grillner,et al.  Mechanisms for selection of basic motor programs – roles for the striatum and pallidum , 2005, Trends in Neurosciences.

[57]  M. Murer,et al.  Turning behavior in rats with unilateral lesion of the subthalamic nucleus: synergism between D1 and D2 receptors , 2005, Journal of Neural Transmission / General Section JNT.

[58]  J. Bargas,et al.  D 1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca 2 1 Conductance , 1997 .

[59]  Dagoberto Tapia,et al.  Different Corticostriatal Integration in Spiny Projection Neurons from Direct and Indirect Pathways , 2010, Front. Syst. Neurosci..

[60]  Luis Carrillo-Reid,et al.  Encoding network states by striatal cell assemblies. , 2008, Journal of neurophysiology.

[61]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[62]  Joshua L. Plotkin,et al.  Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection , 2009, Current Opinion in Neurobiology.

[63]  Luis Carrillo-Reid,et al.  Activation of the cholinergic system endows compositional properties to striatal cell assemblies. , 2009, Journal of neurophysiology.

[64]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[65]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[66]  Kuei Y Tseng,et al.  Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. , 2004, Cerebral cortex.

[67]  J. Bargas,et al.  Diversity of Up-State Voltage Transitions During Different Network States , 2009 .

[68]  J. Bargas,et al.  A reconfiguration of CaV2 Ca2+ channel current and its dopaminergic D2 modulation in developing neostriatal neurons. , 2005, Journal of neurophysiology.

[69]  M. Belluscio,et al.  NMDA Receptor Gating of Information Flow through the Striatum In Vivo , 2008, The Journal of Neuroscience.

[70]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[71]  Yitzhak Schiller,et al.  NMDA receptor-mediated dendritic spikes and coincident signal amplification , 2001, Current Opinion in Neurobiology.

[72]  A. Graybiel Building action repertoires: memory and learning functions of the basal ganglia , 1995, Current Opinion in Neurobiology.

[73]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[74]  C. Cepeda,et al.  Persistent Na+ conductance in medium-sized neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp recordings. , 1995, Journal of neurophysiology.