Simulating Radiative Transfer with Filtered Spherical Harmonics

Abstract This Letter presents a novel application of filters to the spherical harmonics ( P N ) expansion for radiative transfer problems in the high-energy-density regime. The filter, which is based on non-oscillatory spherical splines, preserves both the equilibrium diffusion limit and formal convergence properties of the unfiltered expansion. While the method requires further mathematical justification and computational studies, preliminary results demonstrate that solutions to the filtered P N equations are (1) more robust and less oscillatory than standard P N solutions and (2) more accurate than discrete ordinates solutions of comparable order. The filtered P 7 solution demonstrates comparable accuracy to an implicit Monte Carlo solution for a benchmark hohlraum problem. Given the benefits of this method we believe it will enable more routine use of high-fidelity radiation-hydrodynamics calculations in the simulation of physical systems.

[1]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[2]  T. Brunner,et al.  Riemann solvers for time-dependent transport based on the maximum entropy and spherical harmonics closures , 2000 .

[3]  Bingjing Su,et al.  Variable Eddington Factors and Flux Limiters in Radiative Transfer , 2001 .

[4]  Gordon L. Olson,et al.  Second-order time evolution of PN equations for radiation transport , 2009, J. Comput. Phys..

[5]  G. C. Pomraning The Equations of Radiation Hydrodynamics , 2005 .

[6]  Michael L. Hall,et al.  Diffusion, P1, and other approximate forms of radiation transport , 2000 .

[7]  James Paul Holloway,et al.  One-dimensional Riemann solvers and the maximum entropy closure , 2001 .

[8]  J. A. Fleck,et al.  An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport , 1971 .

[9]  D. S. Kershaw,et al.  Flux limiting nature`s own way -- A new method for numerical solution of the transport equation , 1976 .

[10]  Edward W. Larsen,et al.  Asymptotic analysis of radiative transfer problems , 1983 .

[11]  Martin Frank,et al.  Diffusive Corrections to PN Approximations , 2009, Multiscale Model. Simul..

[12]  T. J. Urbatsch,et al.  Milagro Version 2 An Implicit Monte Carlo Code for Thermal Radiative Transfer: Capabilities, Development, and Usage , 2006 .

[13]  F. Douglas Swesty,et al.  A NUMERICAL ALGORITHM FOR MODELING MULTIGROUP NEUTRINO-RADIATION HYDRODYNAMICS IN TWO SPATIAL DIMENSIONS , 2006 .

[14]  Cory D. Hauck,et al.  High-Order Entropy-Based Closures for Linear Transport in Slab Geometries , 2011 .

[15]  James Paul Holloway,et al.  On solutions to the Pn equations for thermal radiative transfer , 2008, J. Comput. Phys..

[16]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[17]  Martin Frank,et al.  Higher order minimum entropy approximations in radiative transfer , 2008, 0812.3063.

[18]  Jim E. Morel,et al.  Analysis of Ray-Effect Mitigation Techniques , 2003 .

[19]  T. S. Perry,et al.  Observation of collapsing radiative shocks in laboratory experiments , 2006 .

[20]  Ryan G. McClarren,et al.  The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws , 2008, J. Comput. Phys..

[21]  Ryan G. McClarren,et al.  A modified implicit Monte Carlo method for time-dependent radiative transfer with adaptive material coupling , 2009, J. Comput. Phys..

[22]  James Paul Holloway,et al.  A QUASI-STATIC CLOSURE FOR 3 RD ORDER SPHERICAL HARMONICS TIME-DEPENDENT RADIATION TRANSPORT IN 2-D , 2009 .

[23]  Ryan G. McClarren,et al.  Semi-implicit time integration for PN thermal radiative transfer , 2008, J. Comput. Phys..

[24]  Ryan G. McClarren,et al.  Analytic P1 solutions for time-dependent, thermal radiative transfer in several geometries , 2008 .

[25]  Ryan G. McClarren,et al.  Positive PN Closures , 2010, SIAM J. Sci. Comput..

[26]  R. P. Drake Theory of radiative shocks in optically thick media , 2007 .

[27]  Michael S. Warren,et al.  SNSPH: A Parallel Three-dimensional Smoothed Particle Radiation Hydrodynamics Code , 2005, astro-ph/0512532.

[28]  R. G. Adams,et al.  Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .