Optical control of single excitons in semiconductor quantum dots

The fundamental building block of quantum information processing technologies is the quantum-bit a ?qubit.? These technologies require the ability to prepare, control, and read out a qubit state. Spins confined in self-assembled quantum dots are promising candidates for a quantum bit, because semiconductors are compatible with mature modern opto- and micro-electronics. These quantum dot systems offer two more advantages: they are excellent interfaces between the spin state?an anchored qubit and a photon?a ?flying qubit? and they provide means to coherently control the spin qubit by ultrashort optical pulses. In this review, we thoroughly discuss the qubit provided by an optically-excited electron in a quantum dot?the exciton qubit. We demonstrate its spin state initialization, coherent control and read-out using ultrashort optical pulses.

[1]  K. Pierz,et al.  Resonant optical excitation of longitudinal-optical phonons and intermixing in InAs∕AlAs single quantum dots , 2008 .

[2]  Daniel Gammon,et al.  Semiconductor physics: Electrons in artificial atoms , 2000, Nature.

[3]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[4]  Radiative lifetimes of single excitons in semiconductor quantum dots — manifestation of the spatial coherence effect , 2000, cond-mat/0011166.

[5]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[6]  G. A. Baraff,et al.  Calculating the optical properties of multidimensional heterostructures: Application to the modeling of quaternary quantum well lasers , 1993 .

[7]  T. Takagahara,et al.  Theory of exciton doublet structures and polarization relaxation in single quantum dots , 2000 .

[8]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[9]  R. M. Stevenson,et al.  All-electrical coherent control of the exciton states in a single quantum dot , 2010, 1011.2641.

[10]  P. Petroff,et al.  Size Quantization and Zero Dimensional Effects in Self Assembled Semiconductor Quantum Dots , 1997 .

[11]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[12]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[13]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[14]  Winston V. Schoenfeld,et al.  Semiconductor Quantum Dot , 2001 .

[15]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[16]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[17]  I. I. Zasavitskii,et al.  Active-region designs in quantum cascade lasers , 2012 .

[18]  A. Zrenner,et al.  Coherent properties of a two-level system based on a quantum-dot photodiode , 2002, Nature.

[19]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[20]  B. Gerardot,et al.  Emission characteristics of quantum dots in planar microcavities , 2005, cond-mat/0511350.

[21]  Self-assembled semiconductor quantum dots , 2002 .

[22]  M. S. Skolnick,et al.  Fast optical preparation, control, and readout of a single quantum dot spin. , 2007, Physical review letters.

[23]  S. Economou,et al.  Proposal for optical U(1) rotations of electron spin trapped in a quantum dot , 2006 .

[24]  E. Lifshitz,et al.  Magneto optics of single photons emitted from single InAs/GaAs self-assembled quantum dots in a planar microcavity , 2006 .

[25]  P. Petroff,et al.  Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics. , 2001, Physical review letters.

[26]  T. Kaldewey,et al.  All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current , 2012, Scientific Reports.

[27]  Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. , 2004, Physical review letters.

[28]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[29]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[30]  B. Gerardot,et al.  Accessing the dark exciton with light , 2010 .

[31]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[32]  A. Schliwa,et al.  Hole-hole and electron-hole exchange interactions in single InAs/GaAs quantum dots , 2009 .

[33]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[34]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[35]  T. Krauss,et al.  Enhanced phonon-assisted absorption in single InAs/GaAs quantum dots , 2001 .

[36]  F. Henneberger,et al.  Electron-hole exchange interaction in a negatively charged quantum dot , 2005 .

[37]  K. Nishi,et al.  Shape transition of InAs quantum dots by growth at high temperature , 1999 .

[38]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[39]  P. Petroff,et al.  Two-photon photoluminescence excitation spectroscopy of single quantum dots , 2011, 1105.4861.

[40]  K. Pierz,et al.  Phonons in InAs/AlAs single quantum dots observed by optical emission , 2005 .

[41]  Clarence Zener,et al.  Double Stern-Gerlach Experiment and Related Collision Phenomena , 1932 .

[42]  M. Pate,et al.  Tuning self-assembled InAs quantum dots by rapid thermal annealing , 1997 .

[43]  A. Malko,et al.  Quantum Dot Exciton Dynamics Probed by Photon-Correlation Spectroscopy , 2006 .

[44]  T. Takagahara Theory of unitary spin rotation and spin-state tomography for a single electron and two electrons , 2010 .

[45]  F. Jensen Introduction to Computational Chemistry , 1998 .

[46]  M. Winkelnkemper,et al.  Spectroscopic access to single-hole energies in InAs/GaAs quantum dots , 2009 .

[47]  M. Hopkinson,et al.  Two qubit conditional quantum logic operation in a single self-assembled quantum dot , 2008 .

[48]  Barenco,et al.  Quantum many-body states of excitons in a small quantum dot. , 1995, Physical review. B, Condensed matter.

[49]  Sander,et al.  Effect of strain on surface morphology in highly strained InGaAs films. , 1991, Physical review letters.

[50]  J. Venables,et al.  Nucleation and growth of thin films , 1984 .

[51]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[52]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[53]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[54]  Katherine Truex,et al.  Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. , 2010, Physical review letters.

[55]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[56]  A. Zolotaryov,et al.  InAs-coverage dependence of self-assembled quantum dot size, composition, and density , 2007 .

[57]  M. Z. Maialle,et al.  Mixed singlet-triplet trion states in quantum dot molecules: A spatial-dependent spin-splitting effect , 2007 .

[58]  M. Bichler,et al.  Coherent control of a single exciton qubit by optoelectronic manipulation , 2010 .

[59]  Axel Lorke,et al.  Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .

[60]  C. Pryor Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations , 1997, cond-mat/9710304.

[61]  D. Gershoni,et al.  Radiative Cascades in Semiconductor Quantum Dots , 2011 .

[62]  Gammon,et al.  Fine structure splitting in the optical spectra of single GaAs quantum dots. , 1996, Physical review letters.

[63]  A. Zunger,et al.  Pseudopotential calculation of the excitonic fine structure of million-atom self-assembledIn1−xGaxAs/GaAsquantum dots , 2003 .

[64]  A. Zunger,et al.  Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots , 2007 .

[65]  M Rabe,et al.  Photon beats from a single semiconductor quantum dot. , 2001, Physical review letters.

[66]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[67]  Lee C. Bassett,et al.  Spin-Light Coherence for Single-Spin Measurement and Control in Diamond , 2010, Science.

[68]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[69]  J. Bergman,et al.  Handbook of luminescent semiconductor materials , 2011 .

[70]  David T. D. Childs,et al.  Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy , 2000 .

[71]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[72]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[73]  P. Petroff,et al.  Complete control of a matter qubit using a single picosecond laser pulse , 2012, 1204.0932.

[74]  B. Gerardot,et al.  Polarization sensitive spectroscopy of charged quantum dots , 2007, 0706.1288.

[75]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[76]  Erik D. Kim,et al.  Selective optical control of electron spin coherence in singly charged GaAs-Al0.3Ga0.7As quantum dots. , 2007, Physical review letters.

[77]  R. H. Brown,et al.  A Test of a New Type of Stellar Interferometer on Sirius , 1956, Nature.

[78]  Leonard,et al.  Critical layer thickness for self-assembled InAs islands on GaAs. , 1994, Physical review. B, Condensed matter.

[79]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[80]  A. Miard,et al.  Hole-spin initialization and relaxation times in InAs/GaAs quantum dots , 2011 .

[81]  E. Togan,et al.  Quantum teleportation from a propagating photon to a solid-state spin qubit , 2013, Nature Communications.

[82]  Thomas F. Krauss,et al.  Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots , 2001 .

[83]  Christian Schneider,et al.  Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit , 2011, 1106.5676.

[84]  P. Petroff,et al.  Coherent optical writing and reading of the exciton spin state in single quantum dots. , 2010, Physical review letters.

[85]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[86]  B. Gerardot,et al.  Radiative cascade from quantum dot metastable spin-blockaded biexciton , 2010, 1007.0124.

[87]  E. Dekel,et al.  Carrier-carrier correlations in an optically excited single semiconductor quantum dot , 1999, cond-mat/9904334.

[88]  G. Abstreiter,et al.  Phonon-assisted biexciton generation in a single quantum dot , 2000 .

[89]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[90]  Alex Greilich,et al.  Ultrafast optical control of entanglement between two quantum-dot spins , 2011 .

[91]  B. Gerardot,et al.  Radiative cascades from charged semiconductor quantum dots , 2010 .

[92]  Chang,et al.  New evidence of extensive valence-band mixing in GaAs quantum wells through excitation photoluminescence studies. , 1985, Physical review. B, Condensed matter.

[93]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[94]  R. Murray,et al.  Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots , 2003 .

[95]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[96]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[97]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[98]  Jean-Michel Gérard,et al.  Quantum Cascade of Photons in Semiconductor Quantum Dots , 2001 .

[99]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[100]  K. Kavokin Fine structure of the quantum-dot trion , 2003 .

[101]  Excitation spectroscopy of single quantum dots at tunable positive, neutral and negative charge states , 2001, cond-mat/0105589.

[102]  L. J. Sham,et al.  Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. , 2012, Physical review letters.

[103]  A D Wieck,et al.  Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum Wells. , 2013, Physical review letters.

[104]  D. Gershoni,et al.  Optically induced rotation of an exciton spin in a semiconductor quantum dot. , 2011, Physical review letters.

[105]  M. S. Skolnick,et al.  Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. , 2011, Physical review letters.

[106]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[107]  G. Medeiros-Ribeiro,et al.  Coulomb interactions in small charge-tunable quantum dots: A simple model , 1998 .

[108]  Luke F. Lester,et al.  GaAs-Based Quantum Dot Lasers , 2012 .

[109]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[110]  M. Bayer,et al.  Ultrafast optical rotations of electron spins in quantum dots , 2009, 0910.3940.

[111]  Winston V. Schoenfeld,et al.  Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy , 2000 .

[112]  O. Schmidt,et al.  Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K , 2007 .

[113]  Pierre Petroff,et al.  Electronic states tuning of InAs self-assembled quantum dots , 1998 .

[114]  Mats-Erik Pistol,et al.  Single quantum dots emit single photons at a time: Antibunching experiments , 2001 .

[115]  Gammon,et al.  Coherent optical control of the quantum state of a single quantum Dot , 1998, Science.

[116]  Timothy F. Havel,et al.  Benchmarking quantum control methods on a 12-qubit system. , 2006, Physical review letters.

[117]  G. Bastard,et al.  Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons , 1999 .

[118]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.