Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries

Nonaqueous potassium-ion batteries have emerged as possible low-cost alternatives to Li-ion batteries for large-scale energy storage, owing to their ability to use graphitic carbon as the negative electrode. Positive electrode materials remain a challenge. Here, we report control of the crystal dimensions of the Prussian white hexacyanoferrate (HCF), K1.7Fe[Fe(CN)6]0.9, using solution chemistry to obtain either nano, submicron, or micron crystallites. We observe a very strong effect of crystallite size on electrochemical behavior. The optimal cathode material comprised of 20 nm crystallites delivers a close-to-theoretical reversible capacity of 140 mAh g–1 with two well-defined plateaus at 4.0 and 3.2 V vs K/K+ upon discharge. Slightly inferior electrochemical behavior is observed for crystallites up to ∼160–200 nm in diameter, but unlike the analogous Na HCFs, micron-sized crystals show very limited capacity. For the nanosized crystallites, however, the energy density of ∼500 Wh kg–1 is comparable to tha...

[1]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[2]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[3]  Zelang Jian,et al.  Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries , 2017 .

[4]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[5]  Joel S. Miller,et al.  Anomalous non-Prussian blue structures and magnetic ordering of K(2)Mn(II)[Mn(II)(CN)(6)] and Rb(2)Mn(II)[Mn(II)(CN)(6)]. , 2010, Inorganic chemistry.

[6]  Jiulin Wang,et al.  Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[7]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[8]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[9]  R. Solanki,et al.  Prussian Green: A High Rate Capacity Cathode for Potassium Ion Batteries , 2015 .

[10]  Yunhui Huang,et al.  Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries , 2016 .

[11]  Joel S. Miller,et al.  Non-Prussian blue structures and magnetic ordering of Na2Mn(II)[Mn(II)(CN)6] and Na2Mn(II)[Mn(II)(CN)6]·2H2O. , 2012, Journal of the American Chemical Society.

[12]  Ya‐Xia Yin,et al.  Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries , 2014, Nano Research.

[13]  J. Goodenough,et al.  Theoretical Study of the Structural Evolution of a Na2FeMn(CN)6 Cathode upon Na Intercalation , 2015, Chemistry of Materials.

[14]  Kyusung Park,et al.  Liquid K–Na Alloy Anode Enables Dendrite‐Free Potassium Batteries , 2016, Advanced materials.

[15]  Yuesheng Wang,et al.  P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries , 2015, Nature Communications.

[16]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[17]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[18]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[19]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[20]  Yang Xu,et al.  Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries , 2017 .

[21]  Andrew J. Binder,et al.  Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. , 2014, Angewandte Chemie.

[22]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[23]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[24]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[25]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[26]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[27]  Hai Liang,et al.  On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[28]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[29]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[30]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[31]  Yan Yao,et al.  Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries , 2016 .

[32]  Yang Liu,et al.  Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes , 2015 .

[33]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[34]  Yi Cui,et al.  Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries , 2014, Nature Communications.

[35]  L. Nazar,et al.  Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability , 2015 .

[36]  Yunhui Huang,et al.  Sulfur‐Doped Carbon with Enlarged Interlayer Distance as a High‐Performance Anode Material for Sodium‐Ion Batteries , 2015, Advanced science.

[37]  Jin Han,et al.  Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. , 2016, Chemical communications.

[38]  Steven D. Lacey,et al.  Organic electrode for non-aqueous potassium-ion batteries , 2015 .

[39]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[40]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[41]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[42]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[43]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[44]  Wenwen Deng,et al.  Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries , 2013 .