The integrated Safety Assessment (ISA) methodology, developed by the Spanish Nuclear Safety Council (CSN), has been applied to a thermal-hydraulic analysis of PWR Station Blackout (SBO) sequences in the context of the IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) network objectives. The ISA methodology allows obtaining the damage domain (the region of the uncertain parameters space where the damage limit is exceeded) for each sequence of interest as a function of the operator actuations times (recovery of AC). Given a particular safety limit or damage limit, several data of every sequence are necessary in order to obtain the exceedance frequency of that limit. In this application these data are obtained from the results of the simulations performed with MAAP code transients inside each damage domain and the time-density probability distributions of the manual actions. Several damage limits have been taken into account within the analysis: local cladding damage (PCT>1477 K); local fuel melting (T>2499 K); fuel relocation in lower plenum and vessel failure. Therefore, to every one of these damage variables corresponds a different damage domain. The results show the capability and necessity of the ISA methodology, or similar, in order to obtain accurate results that take into account time uncertainties.Copyright © 2013 by ASME