Lamellar assembly of cadmium selenide nanoclusters into quantum belts.

Here, we elucidate a double-lamellar-template pathway for the formation of CdSe quantum belts. The lamellar templates form initially by dissolution of the CdX(2) precursors in the n-octylamine solvent. Exposure of the precursor templates to selenourea at room temperature ultimately affords (CdSe)(13) nanoclusters entrained within the double-lamellar templates. Upon heating, the nanoclusters are transformed to CdSe quantum belts having widths, lengths, and thicknesses that are predetermined by the dimensions within the templates. This template synthesis is responsible for the excellent optical properties exhibited by the quantum belts. We propose that the templated-growth pathway is responsible for the formation of the various flat, colloidal nanocrystals recently discovered, including nanoribbons, nanoplatelets, nanosheets, and nanodisks.

[1]  M. D. Ben,et al.  Density Functional Study on the Morphology and Photoabsorption of CdSe Nanoclusters , 2011 .

[2]  B. Dubertret,et al.  Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. , 2011, Journal of the American Chemical Society.

[3]  Albert D. Dukes,et al.  Synthesis of Magic-Sized CdSe and CdTe Nanocrystals with Diisooctylphosphinic Acid , 2010 .

[4]  Andreas Kornowski,et al.  Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment , 2010, Science.

[5]  Kai Sun,et al.  Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons , 2010, Science.

[6]  P. C. Gibbons,et al.  Origin of high photoluminescence efficiencies in CdSe quantum belts. , 2010, Nano letters.

[7]  J. Furdyna,et al.  Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. , 2010, Nature materials.

[8]  T. Emge,et al.  Flexible hybrid semiconductors with low thermal conductivity: the role of organic diamines. , 2009, Angewandte Chemie.

[9]  Jung Ho Yu,et al.  Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. , 2009, Angewandte Chemie.

[10]  Xiurong Yang,et al.  Phosphine-Free Synthesis of High-Quality CdSe Nanocrystals in Noncoordination Solvents: Activating Agent and Nucleating Agent Controlled Nucleation and Growth , 2009 .

[11]  G. Urban,et al.  Blue luminescence and superstructures from magic size clusters of CdSe. , 2009, Nano letters.

[12]  Benoit Dubertret,et al.  Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. , 2008, Journal of the American Chemical Society.

[13]  T. Nann,et al.  Synthesis and spectroscopic characterization of fluorescent blue-emitting ultrastable CdSe clusters. , 2008, Small.

[14]  H. Kim,et al.  Unstable single-layered colloidal TiS2 nanodisks. , 2008, Small.

[15]  A. Dong,et al.  Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. , 2007, Journal of the American Chemical Society.

[16]  Zhiyong Tang,et al.  Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets , 2006, Science.

[17]  K. Jensen,et al.  Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: implications for nanocrystalline growth. , 2006, The journal of physical chemistry. B.

[18]  K. Park,et al.  Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. , 2006, Angewandte Chemie.

[19]  Jung Ho Yu,et al.  Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. , 2006, Journal of the American Chemical Society.

[20]  Huifang Xu,et al.  Colloidal CdSe quantum wires by oriented attachment. , 2006, Nano letters.

[21]  T. Hyeon,et al.  Single unit cell thick samaria nanowires and nanoplates. , 2006, Journal of the American Chemical Society.

[22]  A. P. Alivisatos,et al.  First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. , 2005, Journal of Physical Chemistry B.

[23]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[24]  Uri Banin,et al.  Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods , 2003, Nature materials.

[25]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[26]  A. Alivisatos,et al.  Synthesis of hcp-Co Nanodisks. , 2002, Journal of the American Chemical Society.

[27]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[28]  T. Sasaki,et al.  Two-Dimensional Diffraction of Molecular Nanosheet Crystallites of Titanium Oxide , 2001 .

[29]  Xiaogang Peng,et al.  Mechanisms of the Shape Evolution of CdSe Nanocrystals , 2001 .

[30]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[31]  A. Clearfield,et al.  Catalyzed Growth of a Metastable InS Crystal Structure as Colloidal Crystals , 2000 .

[32]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[33]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .