The Novamente Artificial Intelligence Engine

The Novamente AI Engine, a novel AI software system, is briefly reviewed. Novamente is an integrative artificial general intelligence design, which integrates aspects of many prior AI projects and paradigms, including symbolic, probabilistic, evolutionary programming and reinforcement learning approaches; but its overall architecture is unique, drawing on system-theoretic ideas regarding complex mental dynamics and associated emergent patterns. The chapter reviews both the conceptual models of mind and intelligence which inspired the system design, and the concrete architecture of Novamente as a software system.

[1]  Agostino Poggi,et al.  Multiagent Systems , 2006, Intelligenza Artificiale.

[2]  B. Baars A cognitive theory of consciousness , 1988 .

[3]  John Langford,et al.  Probabilistic Planning in the Graphplan Framework , 1999, ECP.

[4]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[5]  R. Kurzweil The Age of Spiritual Machines , 1999 .

[6]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Pierre Baldi,et al.  DNA Microarrays and Gene Expression - From Experiments to Data Analysis and Modeling , 2002 .

[9]  James S. Albus,et al.  Engineering of Mind: An Introduction to the Science of Intelligent Systems , 2001 .

[10]  Ian Witten,et al.  Data Mining , 2000 .

[11]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[12]  B. Indurkhya,et al.  Metaphor and Cognition: An Interactionist Approach , 1993, CL.

[13]  David F. Heidel,et al.  An Overview of the BlueGene/L Supercomputer , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[14]  Dorothy Schattner,et al.  Labeling the Mentally Retarded , 1974 .

[15]  Peter G. Harrison,et al.  Functional Programming , 1988 .

[16]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[17]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[18]  D. Hofstadter Metamagical Themas: Questing for the Essence of Mind and Pattern , 1985 .

[19]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[20]  Stuart C. Shapiro,et al.  An Introduction to SNePS 3 , 2000, ICCS.

[21]  C. Brand,et al.  The g Factor: General Intelligence and Its Implications , 1996 .

[22]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[23]  Ben Goertzel,et al.  Creating Internet Intelligence , 2002 .

[24]  Bernard Meltzer,et al.  Brains and Programs , 1977, International Computing Symposium.

[25]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[26]  John R. Josephson,et al.  Abductive inference : computation, philosophy, technology , 1994 .

[27]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[28]  Gerhard Lakemeyer,et al.  Belief Update in the pGOLOG Framework , 2001, KI/ÖGAI.

[29]  Alex Acero,et al.  Spoken Language Processing: A Guide to Theory, Algorithm and System Development , 2001 .

[30]  W. Ebeling,et al.  From Instability to Intelligence. Complexity and Predictability in Nonlinear Dynamics , 1999 .

[31]  Victor W. Marek,et al.  Book review: Combinatorics, Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability by B. Bollobas (Cambridge University Press) , 1987, SGAR.

[32]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[33]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[34]  A. Meystel,et al.  NEURAL NETWORK BASED PLANNER/LEARNER FOR CONTROL SYSTEMS , 1997 .

[35]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[36]  S. Bennett Brainchildren: Essays on Designing Minds , 1999 .

[37]  J. Holland A mathematical framework for studying learning in classifier systems , 1986 .

[38]  Pei Wang,et al.  On the Working Definition of Intelligence , 2003 .

[39]  Ben Goertzel,et al.  The Evolving Mind , 1993 .

[40]  Jessica Riskin,et al.  :The Wild Girl, Natural Man, and the Monster: Dangerous Experiments in the Age of Enlightenment , 2004 .

[41]  Michael R. Lowry,et al.  Deductive Composition of Astronomical Software from Subroutine Libraries , 1994, CADE.

[42]  B. Indurkhya Metaphor and Cognition: An Interactionist Approach , 1992 .

[43]  N. Curteanu Book Reviews: Lecture on Contemporary Syntactic Theories: An Introduction to Unification-Based Approaches to Grammar , 1987, CL.

[44]  N. Sahlin,et al.  The Complexity of Creativity , 1997 .

[45]  R. Penrose,et al.  Shadows of the Mind , 1994 .

[46]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[47]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[48]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[49]  L. Zadeh,et al.  Fuzzy Logic for the Management of Uncertainty , 1992 .

[50]  S. Bennett Brainchildren: Essays on Designing Minds , 1999 .

[51]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[52]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[53]  S. Grossberg Neural Networks and Natural Intelligence , 1988 .

[54]  Stanley Letovsky,et al.  Bioinformatics: Databases and Systems , 2013, Springer US.

[55]  Olaf Chitil,et al.  Functional Programming , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[56]  Jürgen Schmidhuber,et al.  Bias-Optimal Incremental Problem Solving , 2002, NIPS.

[57]  D. Stork Scientist on the Set : An Interview with Marvin Minsky , 1997 .

[58]  Patrice Y. Simard,et al.  Analysis of Recurrent Backpropagation , 1988 .

[59]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[60]  Gregory. J. Chaitin,et al.  Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.

[61]  R L Thorndike,et al.  Structure of intelligence. , 1967, Proceedings of the annual meeting of the American Psychopathological Association.

[62]  Leslie Pack Kaelbling,et al.  Planning under Time Constraints in Stochastic Domains , 1993, Artif. Intell..

[63]  G. Bateson,et al.  Mind and Nature: A Necessary Unity , 1979 .

[64]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[65]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[66]  V. S. Subrahmanian Nonmonotonic Logic Programming , 1999, IEEE Trans. Knowl. Data Eng..

[67]  Howard S. Becker,et al.  Labeling the Mentally Retarded. , 1974 .

[68]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[69]  Judea Pearl,et al.  Chapter 2 – BAYESIAN INFERENCE , 1988 .

[70]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[71]  G. Kampis Self-modifying systems in biology and cognitive science , 1991 .

[72]  Marcus Hutter,et al.  Towards a Universal Theory of Artificial Intelligence Based on Algorithmic Probability and Sequential Decisions , 2000, ECML.

[73]  F. Varela Principles of biological autonomy , 1979 .

[74]  Joseph Poulshock,et al.  Lingua ex Machina: Reconciling Darwin and Chomsky with the Human Brain , 2001 .