Coproduct for affine Yangians and parabolic induction for rectangular W-algebras

We construct algebra homomorphisms from affine Yangians to the current algebras of rectangular W -algebras both in type A. The construction is given via the coproduct and the evaluation map for the affine Yangians. As a consequence, we show that parabolic inductions for representations of the rectangular W -algebras can be regarded as tensor product representations of the affine Yangians under the homomorphisms. The same method is applicable also to the super-setting.

[1]  E. Frenkel,et al.  Vertex Algebras and Algebraic Curves , 2000, math/0007054.

[2]  Naoki Genra Screening operators and parabolic inductions for affine W-algebras , 2018, Advances in Mathematics.

[3]  T. Creutzig,et al.  Ju n 20 19 YITP-1949 Rectangular W-( super ) algebras and their representations , 2019 .

[4]  B. Feigin,et al.  Yangians and cohomology rings of Laumon spaces , 2008, 0812.4656.

[5]  Yung-Ning Peng Finite W-Superalgebras and Truncated Super Yangians , 2013, 1304.3913.

[6]  A. Tsymbaliuk,et al.  Multiplicative Slices, Relativistic Toda and Shifted Quantum Affine Algebras , 2017, Representations and Nilpotent Orbits of Lie Algebraic Systems.

[7]  T. Creutzig,et al.  Rectangular W-algebras, extended higher spin gravity and dual coset CFTs , 2018, Journal of High Energy Physics.

[8]  A. Molev,et al.  Explicit generators in rectangular affine W -algebras of type A , 2016 .

[9]  Representations of Shifted Yangians and Finite W-algebras , 2005, math/0508003.

[10]  A. Neguț Toward AGT for parabolic sheaves , 2019 .

[11]  A. Molev,et al.  Explicit generators in rectangular affine $$\mathcal {W}$$W-algebras of type A , 2014, 1403.1017.

[12]  Michela Varagnolo,et al.  K-theoretic Hall algebras, quantum groups and super quantum groups , 2021, Selecta Mathematica.

[13]  N. Guay Affine Yangians and deformed double current algebras in type A , 2007 .

[14]  J. Brundan,et al.  Shifted Yangians and finite W-algebras , 2004, math/0407012.

[15]  R. Kodera On Guay’s Evaluation Map for Affine Yangians , 2018, 1806.09884.

[16]  T. Arakawa REPRESENTATION THEORY OF W-ALGEBRAS AND HIGGS BRANCH CONJECTURE , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[17]  T. Arakawa Representation theory of $\mathcal{W}$-algebras , 2007 .

[18]  M. Finkelberg,et al.  INSTANTON MODULI SPACES AND W-ALGEBRAS , 2014 .

[19]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.

[20]  C. Wendlandt,et al.  Coproduct for Yangians of affine Kac–Moody algebras , 2017, Advances in Mathematics.

[21]  Boris Feigin,et al.  Quantization of the Drinfeld-Sokolov reduction , 1990 .

[22]  C. Wendlandt,et al.  Vertex representations for Yangians of Kac-Moody algebras , 2018, Journal de l’École polytechnique — Mathématiques.

[23]  H. Nakajima Handsaw quiver varieties and finite W-algebras , 2011, 1107.5073.

[24]  B. Feigin,et al.  A Finite Analog of the AGT Relation I: Finite W-Algebras and Quasimaps’ Spaces , 2010, 1008.3655.

[25]  R. Kodera Braid Group Action on Affine Yangian , 2018, Symmetry, Integrability and Geometry: Methods and Applications.

[26]  T. Arakawa Introduction to W-Algebras and Their Representation Theory , 2016, 1605.00138.

[27]  Yung-Ning Peng Finite W-superalgebras via super Yangians , 2020, 2001.08718.

[28]  O. Schiffmann,et al.  Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2 , 2012, Publications mathématiques de l'IHÉS.

[29]  Tomáš Procházka,et al.  The matrix-extended W 1+ 1 algebra , 2019 .

[30]  Naoki Genra Screening operators for $$\mathcal {W}$$W-algebras , 2016, 1606.00966.