Digital Distance Transforms in 3D Images Using Information from Neighbourhoods up to 5×5×5

A 3D distance image, or a distance transform, is an image where each feature voxel is labeled with the distance to its closest nonfeature voxel. Distance transforms are useful for many binary (shape) image analysis tasks. The distance transform can be computed by propagating local distance information between neighboring voxels. In a weighted distance transform, the local distances are optimized to make the distance transform more stable under rotation: We present results from optimization for 3D images when using from one to six local distances, all in the 5 × 5 × 5 neighborhood of a voxel.

[1]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[2]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[3]  Ugo Montanari,et al.  A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.

[4]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[5]  P. Danielsson Euclidean distance mapping , 1980 .

[6]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[7]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[8]  Toshihide Ibaraki,et al.  Distances defined by neighborhood sequences , 1986, Pattern Recognit..

[9]  Jim Piper,et al.  Computing distance transformations in convex and non-convex domains , 1987, Pattern Recognit..

[10]  Gabriella Sanniti di Baja,et al.  Finding local maxima in a pseudo-Euclidian distance transform , 1988, Comput. Vis. Graph. Image Process..

[11]  Albert M. Vossepoel,et al.  A note on "distance transformations in digital images" , 1988, Comput. Vis. Graph. Image Process..

[12]  Piet W. Verbeek,et al.  An Efficient Uniform Cost Algorithm Applied to Distance Transforms , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  P. P. Das,et al.  Octagonal distances for digital pictures , 1990, Inf. Sci..

[14]  Ben J. H. Verwer,et al.  Local distances for distance transformations in two and three dimensions , 1991, Pattern Recognit. Lett..

[15]  Gunilla Borgefors Another comment on "a note on 'distance transformations in digital images'" , 1991, CVGIP Image Underst..

[16]  Arnold W. M. Smeulders,et al.  Optimization of length measurements for isotropic distance transformations in three dimension , 1991, CVGIP: Image Understanding.

[17]  Frederic Fol Leymarie,et al.  Fast raster scan distance propagation on the discrete rectangular lattice , 1992, CVGIP Image Underst..

[18]  Ching-Shoei Chiang The Euclidean distance transform , 1992 .

[19]  Gábor Székely,et al.  Estimating shortest paths and minimal distances on digitized three-dimensional surfaces , 1993, Pattern Recognit..

[20]  Ingemar Ragnemalm,et al.  The Euclidean distance transform in arbitrary dimensions , 1992, Pattern Recognit. Lett..

[21]  Nahum Kiryati,et al.  Chain code probabilities and optimal length estimators for digitized three-dimensional curves , 1995, Pattern Recognit..

[22]  Jack Bresenham Pixel-processing fundamentals , 1996, IEEE Computer Graphics and Applications.

[23]  Christer O. Kiselman Regularity Properties of Distance Transformations in Image Analysis , 1996, Comput. Vis. Image Underst..

[24]  Pieter P. Jonker,et al.  On Skeletonization in 4D Images , 1996, SSPR.

[25]  Yaorong Ge,et al.  On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Gunilla Borgefors,et al.  On Digital Distance Transforms in Three Dimensions , 1996, Comput. Vis. Image Underst..

[27]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[28]  O. Cuisenaire Distance transformations: fast algorithms and applications to medical image processing , 1999 .

[29]  Benoit M. Macq,et al.  Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods , 1999, Comput. Vis. Image Underst..

[30]  Gabriella Sanniti di Baja,et al.  Surface Skeletons Detected on the D6 Distance Transform , 2000, SSPR/SPR.

[31]  Edouard Thiel,et al.  Optimizing 3D chamfer masks with norm constraints , 2000 .

[32]  Stina Svensson Reversible Surface Skeletons of 3D Objects by Iterative Thinning of Distance Transforms , 2000, Digital and Image Geometry.

[33]  Partha Pratim Das,et al.  On approximating Euclidean metrics by digital distances in 2D and 3D , 2000, Pattern Recognit. Lett..

[34]  Gunilla Borgefors,et al.  2D Segmentation and Labelling of Clustered Ring-Shaped Objects , 2001 .

[35]  Mark W. Jones,et al.  Vector-City Vector Distance Transform , 2001, Comput. Vis. Image Underst..

[36]  Edouard Thiel,et al.  Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D , 2002, Pattern Recognit. Lett..

[37]  Stina Svensson,et al.  Distance transforms in 3D using four different weights , 2002, Pattern Recognit. Lett..