Impact of galactic foreground characterization on a global analysis for the LISA gravitational wave observatory
暂无分享,去创建一个
[1] B. P. Abbott,et al. Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.
[2] N. Cornish,et al. Galactic binary science with the new LISA design , 2017, 1703.09858.
[3] J. P. López-Zaragoza,et al. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.
[4] Neil J. Cornish,et al. Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.
[5] G. Nelemans,et al. A search for the hidden population of AM CVn binaries in the Sloan Digital Sky Survey , 2012, 1211.6439.
[6] T. Littenberg,et al. Astrophysical Model Selection in Gravitational Wave Astronomy , 2012, 1209.6286.
[7] G. Nelemans,et al. Supernova Type Ia progenitors from merging double white dwarfs - Using a new population synthesis model , 2012, 1208.6446.
[8] G. Nelemans,et al. GRAVITATIONAL-WAVE EMISSION FROM COMPACT GALACTIC BINARIES , 2012, 1201.4613.
[9] T. Littenberg. A Detection Pipeline for Galactic Binaries in LISA Data , 2011, 1106.6355.
[10] P. Graff,et al. The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.
[11] M. Vallisneri. Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.
[12] Report on the second Mock LISA Data Challenge , 2007, 0711.2667.
[13] G. Nelemans,et al. The population of AM CVn stars from the Sloan Digital Sky Survey , 2007, 0709.2951.
[14] T. Littenberg,et al. Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.
[15] Bang-Yen Chen,et al. Marginally trapped surfaces in Lorentzian space forms with positive relative nullity , 2007 .
[16] Stanislav Babak,et al. An Overview of the Mock LISA Data Challenges , 2006 .
[17] J. Harms,et al. Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.
[18] N. Cornish,et al. Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.
[19] N. Christensen,et al. LISA source confusion: identification and characterization of signals , 2005, gr-qc/0503121.
[20] N. Cornish,et al. LISA Source Confusion , 2004, gr-qc/0404129.
[21] N. Cornish. Rapid LISA Astronomy , 2003, gr-qc/0312042.
[22] N. Cornish,et al. LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.
[23] S. Larson,et al. The LISA optimal sensitivity , 2002, gr-qc/0209039.
[24] R. Takahashi,et al. Parameter Estimation for Galactic Binaries by the Laser Interferometer Space Antenna , 2002 .
[25] K. Thorne,et al. ArXiv General Relativity and Quantum Cosmology e - prints , 2002 .
[26] P. Bender,et al. Gravitational Radiation from Helium Cataclysmics , 2000 .
[27] J. Armstrong,et al. Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .
[28] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[29] L. Rezzolla,et al. Classical and Quantum Gravity , 2002 .
[30] R. Webbink,et al. Gravitational radiation from the Galaxy , 1990 .