Impact of galactic foreground characterization on a global analysis for the LISA gravitational wave observatory

The Laser Interferometer Space Antenna (LISA) will explore the source-rich milli-Hertz band of the gravitational wave spectrum. In contrast to ground based detectors, where typical signals are short-lived and discrete, LISA signals are typically long-lived and over-lapping, thus requiring a global data analysis solution that is very different to the source-by-source analysis that has been developed for ground based gravitational wave astronomy. Across the LISA band, gravitational waves are both signals and noise. The dominant contribution to this so-called confusion noise (better termed unresolved signal noise) is expected to come from short period galactic white dwarf binaries, but all sources, including massive black hole binaries and extreme mass ratio captures will also contribute. Previous estimates for the galactic confusion noise have assumed perfect signal subtraction. Here we provide analytic estimates for the signal subtraction residuals and the impact they have on parameter estimation while for the first time incorporating the effects of noise modeling. The analytic estimates are found using a maximum likelihood approximation to the full global Bayesian analysis. We find that while the confusion noise is lowered in the global analysis, the waveform errors for individual sources are increased relative to estimates for isolated signals. We provide estimates for how parameter estimation errors are inflated from various parts of a global analysis.

[1]  B. P. Abbott,et al.  Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.

[2]  N. Cornish,et al.  Galactic binary science with the new LISA design , 2017, 1703.09858.

[3]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[4]  Neil J. Cornish,et al.  Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.

[5]  G. Nelemans,et al.  A search for the hidden population of AM CVn binaries in the Sloan Digital Sky Survey , 2012, 1211.6439.

[6]  T. Littenberg,et al.  Astrophysical Model Selection in Gravitational Wave Astronomy , 2012, 1209.6286.

[7]  G. Nelemans,et al.  Supernova Type Ia progenitors from merging double white dwarfs - Using a new population synthesis model , 2012, 1208.6446.

[8]  G. Nelemans,et al.  GRAVITATIONAL-WAVE EMISSION FROM COMPACT GALACTIC BINARIES , 2012, 1201.4613.

[9]  T. Littenberg A Detection Pipeline for Galactic Binaries in LISA Data , 2011, 1106.6355.

[10]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[11]  M. Vallisneri Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.

[12]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[13]  G. Nelemans,et al.  The population of AM CVn stars from the Sloan Digital Sky Survey , 2007, 0709.2951.

[14]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.

[15]  Bang-Yen Chen,et al.  Marginally trapped surfaces in Lorentzian space forms with positive relative nullity , 2007 .

[16]  Stanislav Babak,et al.  An Overview of the Mock LISA Data Challenges , 2006 .

[17]  J. Harms,et al.  Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.

[18]  N. Cornish,et al.  Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.

[19]  N. Christensen,et al.  LISA source confusion: identification and characterization of signals , 2005, gr-qc/0503121.

[20]  N. Cornish,et al.  LISA Source Confusion , 2004, gr-qc/0404129.

[21]  N. Cornish Rapid LISA Astronomy , 2003, gr-qc/0312042.

[22]  N. Cornish,et al.  LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.

[23]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[24]  R. Takahashi,et al.  Parameter Estimation for Galactic Binaries by the Laser Interferometer Space Antenna , 2002 .

[25]  K. Thorne,et al.  ArXiv General Relativity and Quantum Cosmology e - prints , 2002 .

[26]  P. Bender,et al.  Gravitational Radiation from Helium Cataclysmics , 2000 .

[27]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[28]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[29]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[30]  R. Webbink,et al.  Gravitational radiation from the Galaxy , 1990 .