Additional high‐energy milling to enhance the performance of porcelain stoneware manufacturing

[1]  G. Mucsi A review on mechanical activation and mechanical alloying in stirred media mill , 2019, Chemical Engineering Research and Design.

[2]  M. Dondi,et al.  Technological behavior of porcelain stoneware bodies with Egyptian syenites , 2018, International Journal of Applied Ceramic Technology.

[3]  R. Rajapakse,et al.  The effect of prolonged milling time on comminution of quartz , 2018 .

[4]  O. Montedo,et al.  Use of mechanically-activated kaolin to replace ball clay in engobe for a ceramic tile , 2017 .

[5]  Xiaoyang Xu,et al.  White porcelain material based on diopside , 2017 .

[6]  M. Raimondo,et al.  Pyroplastic deformation of porcelain stoneware tiles: Wet vs. dry processing , 2017 .

[7]  C. Santos,et al.  Effect of kaolinite, illite and talc on the processing properties and mullite content of porcelain stoneware tiles , 2014 .

[8]  P. Baglioni,et al.  High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds. , 2014, Journal of colloid and interface science.

[9]  Fábio G. Melchiades,et al.  Deformação Piroplástica de Porcelanatos , 2014 .

[10]  J. Holanda,et al.  Obtainment of porcelain floor tiles added with petroleum oily sludge , 2013 .

[11]  H. Alves,et al.  Effect of feldspar particle size on the porous microstructure and stain resistance of polished porcelain tiles , 2012 .

[12]  M. Raimondo,et al.  The vitreous phase of porcelain stoneware: Composition, evolution during sintering and physical properties , 2011 .

[13]  H. Alves,et al.  Dependence of surface porosity on the polishing depth of porcelain stoneware tiles , 2011 .

[14]  H. Çelik Technological characterization and industrial application of two Turkish clays for the ceramic industry , 2010 .

[15]  J. García-Ten,et al.  Porcelain tile: Almost 30 years of steady scientific-technological evolution , 2010 .

[16]  D. Hotza,et al.  Influence of composition on mechanical behaviour of porcelain tile. Part I: Microstructural characterization and developed phases after firing , 2010 .

[17]  A. Zakharov,et al.  Ceramic item deformation during firing: effects of composition and microstructure (review) , 2009 .

[18]  D. Hotza,et al.  Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates , 2009 .

[19]  William E Lee,et al.  Mullite formation in clays and clay-derived vitreous ceramics , 2008 .

[20]  J. Rincón,et al.  Kinetic of mullite formation from a porcelain stoneware body for tiles production , 2006 .

[21]  M. U. Taskiran,et al.  Influence of mixing/milling on sintering and technological properties of anorthite based porcelainised stoneware , 2006 .

[22]  M. Raimondo,et al.  The role of surface microstructure on the resistance to stains of porcelain stoneware tiles , 2005 .

[23]  Sergio Neves Monteiro,et al.  Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil , 2004 .

[24]  M. Raimondo,et al.  Stain Resistance of Porcelain Stoneware Tiles: The Influence of Microstructure , 2004 .

[25]  G. Nassetti,et al.  Aplicacao do MaxxMill para a moagem final de massas de gres porcelanico: aspectos tecnologicos e energeticos , 2003 .

[26]  Fábio G. Melchiades,et al.  Estabilidade das dimensoes e do formato de revestimentos ceramicos. Parte II: formato , 2001 .