On the Noether theorem for optimal control

We obtain a generalization of E. Noether's theorem for the optimal control problems. The generalization involves a one-parameter family of smooth maps which may depend also on the control and a Lagrangian which is invariant up to an addition of an exact differential.

[1]  Alberto Isidori,et al.  Nonlinear control in the Year 2000 , 2001 .

[2]  Héctor J. Sussmann,et al.  New theories of set-valued differentials and new versions of the maximum principle of optimal control theory , 2001 .

[3]  Emmanuel Trélat,et al.  Some Properties of the Value Function and Its Level Sets for Affine Control Systems with Quadratic Cost , 2000, math/0607424.

[4]  Richard B. Vinter,et al.  Optimal Control , 2000 .

[5]  Arjan van der Schaft,et al.  Optimal control and implicit Hamiltonian systems , 2000 .

[6]  Nina Byers E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws , 1998 .

[7]  N. Byers Noether ’ s Discovery of the Deep Connection Between Symmetries and Conservation Laws , 1998 .

[8]  P. Bérest Calcul des variations , 1997 .

[9]  Andrei A. Agrachev,et al.  Sub-riemannian sphere in Martinet flat case , 1997 .

[10]  V. Jurdjevic Geometric control theory , 1996 .

[11]  H. Sussmann A cornucopia of four-dimensional abnormal sub-Riemannian minimizers , 1996 .

[12]  Andrei A. Agrachev,et al.  On Abnormal Extremals for Lagrange Variational Problems , 1995 .

[13]  Héctor J. Sussmann,et al.  Symmetries and integrals of motion in optimal control , 1995 .

[14]  J. Cariñena,et al.  A geometrical version of Noether's theorem in supermechanics , 1994 .

[15]  An indirect method in the calculus of variations , 1993 .

[16]  Giuseppe Buttazzo,et al.  Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands , 1989 .

[17]  Vladimir Igorevich Arnolʹd Métodos matemáticos da mecânica clássica , 1987 .

[18]  A. J. van der Schaft,et al.  On symmetries in optimal control , 1986, 1986 25th IEEE Conference on Decision and Control.

[19]  F. Clarke The Maximum Principle under Minimal Hypotheses , 1976 .

[20]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[21]  Emmy Noether,et al.  Invariant Variation Problems , 2005, physics/0503066.

[22]  C. W. Kilmister,et al.  THE HAMILTON-JACOBI THEORY IN THE CALCULUS OF VARIATIONS , 1967 .

[23]  Hanno Rund,et al.  The Hamilton-Jacobi theory in the calculus of variations : its role in mathematics and physics , 1967 .

[24]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[25]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[26]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.