On the Noether theorem for optimal control
暂无分享,去创建一个
[1] Alberto Isidori,et al. Nonlinear control in the Year 2000 , 2001 .
[2] Héctor J. Sussmann,et al. New theories of set-valued differentials and new versions of the maximum principle of optimal control theory , 2001 .
[3] Emmanuel Trélat,et al. Some Properties of the Value Function and Its Level Sets for Affine Control Systems with Quadratic Cost , 2000, math/0607424.
[4] Richard B. Vinter,et al. Optimal Control , 2000 .
[5] Arjan van der Schaft,et al. Optimal control and implicit Hamiltonian systems , 2000 .
[6] Nina Byers. E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws , 1998 .
[7] N. Byers. Noether ’ s Discovery of the Deep Connection Between Symmetries and Conservation Laws , 1998 .
[8] P. Bérest. Calcul des variations , 1997 .
[9] Andrei A. Agrachev,et al. Sub-riemannian sphere in Martinet flat case , 1997 .
[10] V. Jurdjevic. Geometric control theory , 1996 .
[11] H. Sussmann. A cornucopia of four-dimensional abnormal sub-Riemannian minimizers , 1996 .
[12] Andrei A. Agrachev,et al. On Abnormal Extremals for Lagrange Variational Problems , 1995 .
[13] Héctor J. Sussmann,et al. Symmetries and integrals of motion in optimal control , 1995 .
[14] J. Cariñena,et al. A geometrical version of Noether's theorem in supermechanics , 1994 .
[15] An indirect method in the calculus of variations , 1993 .
[16] Giuseppe Buttazzo,et al. Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands , 1989 .
[17] Vladimir Igorevich Arnolʹd. Métodos matemáticos da mecânica clássica , 1987 .
[18] A. J. van der Schaft,et al. On symmetries in optimal control , 1986, 1986 25th IEEE Conference on Decision and Control.
[19] F. Clarke. The Maximum Principle under Minimal Hypotheses , 1976 .
[20] David Lovelock,et al. Tensors, differential forms, and variational principles , 1975 .
[21] Emmy Noether,et al. Invariant Variation Problems , 2005, physics/0503066.
[22] C. W. Kilmister,et al. THE HAMILTON-JACOBI THEORY IN THE CALCULUS OF VARIATIONS , 1967 .
[23] Hanno Rund,et al. The Hamilton-Jacobi theory in the calculus of variations : its role in mathematics and physics , 1967 .
[24] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[25] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[26] S. Brendle,et al. Calculus of Variations , 1927, Nature.