Image and Collateral Text in Support of Auto-Annotation and Sentiment Analysis

We present a brief overview of the way in which image analysis, coupled with associated collateral text, is being used for auto-annotation and sentiment analysis. In particular, we describe our approach to auto-annotation using the graph-theoretic dominant set clustering algorithm and the annotation of images with sentiment scores from SentiWordNet. Preliminary results are given for both, and our planned work aims to explore synergies between the two approaches.

[1]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[2]  Yue Wang,et al.  Dominant sets clustering for image retrieval , 2008, Signal Process..

[3]  George Economou,et al.  Combining graph connectivity & dominant set clustering for video summarization , 2009, Multimedia Tools and Applications.

[4]  Diane Neal News photography image retrieval practices: Locus of control in two contexts. , 2006 .

[5]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[6]  M. Pavan,et al.  A new graph-theoretic approach to clustering and segmentation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[8]  Jonathon S. Hare,et al.  On Image Retrieval Using Salient Regions with Vector-Spaces and Latent Semantics , 2005, CIVR.

[9]  Thomas Sikora,et al.  The MPEG-7 visual standard for content description-an overview , 2001, IEEE Trans. Circuits Syst. Video Technol..

[10]  Qianhua He,et al.  A survey on emotional semantic image retrieval , 2008, 2008 15th IEEE International Conference on Image Processing.

[11]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[12]  Andrea Esuli,et al.  Automatic generation of lexical resources for opinion mining: models, algorithms and applications , 2010, SIGF.

[13]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[14]  Peter G. B. Enser Image Retrieval: Theory and Research , 2004, J. Documentation.

[15]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.