Characteristics and Applications of Silicon Carbide Power Devices in Power Electronics

Silicon carbide materials, with its high mechanical strength, high thermal conductivity, ability to operate at high temperatures, and extreme chemical inertness to most of the electrolytes, are very attractive for high-power applications. In this paper, properties, advantages, and limitations of SiC and conventional Si materials are compared. Various applications, where SiC power devices are attractive, are discussed. Keywords—Silicon carbide (SiC), SiC properties, high-voltage, high-temperature, high-frequency applications, high-temperature electronics, wide energy band-gap semiconductors.

[1]  S. Sriram,et al.  SiC for Microwave Power Transistors , 1997 .

[2]  Leon M. Tolbert,et al.  Silicon carbide power device characterization for HEVs , 2002, Power Electronics in Transportation, 2002.

[3]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[4]  Steven T. Peake,et al.  Power semiconductor devices , 1995 .

[5]  J. J. A. Cooper,et al.  Advances in SiC MOS Technology , 1997 .

[6]  A. Kar,et al.  Characteristics of 6H-silicon carbide PIN diodes prototyping by laser doping , 2005 .

[7]  M. Ostling Recent advances in SiC materials and device technologies in Sweden , 1998, 1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132).

[8]  Sei-Hyung Ryu,et al.  Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence , 2007, IEEE Transactions on Power Electronics.

[9]  Marian K. Kazimierczuk,et al.  Pulse-Width Modulated DC-DC Power Converters , 2008 .

[10]  T. Ericsen,et al.  Future navy application of wide bandgap power semiconductor devices , 2002, Proc. IEEE.

[11]  Philip G. Neudeck,et al.  SiC Technology , 2000, The VLSI Handbook.

[12]  Milan M. Jovanovic,et al.  State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview , 2005, IEEE Transactions on Industrial Electronics.

[13]  A. Radun,et al.  A 1-MHz hard-switched silicon carbide DC–DC converter , 2003, IEEE Transactions on Power Electronics.

[14]  Allen R. Hefner,et al.  SiC power diodes provide breakthrough performance for a wide range of applications , 2001 .

[15]  M. K. Kazimierczuk,et al.  High-temperature performance characterization of buck converter using SiC and Si devices , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[16]  K. Kano Semiconductor Devices , 1997 .

[17]  Jerry L. Hudgins,et al.  - Power Semiconductor Devices , 2018, The Electric Power Engineering Handbook - Five Volume Set.

[18]  L. Scheick,et al.  Displacement damage-induced catastrophic second breakdown in silicon carbide Schottky power diodes , 2004, IEEE Transactions on Nuclear Science.

[19]  SiC Schottky Diodes in Power Factor Correction , 2005 .

[20]  Pasqualina M. Sarro,et al.  Silicon carbide as a new MEMS technology , 2000 .

[21]  M. Corradin,et al.  Performance evaluation of a Schottky SiC power diode in a boost PFC application , 2002 .

[22]  Michael Dudley,et al.  Non-Micropipe Dislocations in 4H-SiC Devices: Electrical Properties and Device Technology Implications , 1998 .

[23]  A. Helfrick Investigations relative to the mitigation of interference to analog and digital radio-based avionics systems , 1999, Gateway to the New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No.99CH37033).

[24]  M. Kazimierczuk Pulse-Width Modulated DC-DC Power Converters: Kazimierczuk/Pulse-width Modulated DC-DC Power Converters , 2008 .