Two‐stage auxiliary model gradient‐based iterative algorithm for the input nonlinear controlled autoregressive system with variable‐gain nonlinearity

[1]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[2]  Guoying Zhao,et al.  Signal Reconstruction of Compressed Sensing Based on Alternating Direction Method of Multipliers , 2019, Circuits Syst. Signal Process..

[3]  Ahmed Alsaedi,et al.  Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model , 2020, J. Comput. Appl. Math..

[4]  Hui Liu,et al.  Novel Method for Identifying Fault Location of Mixed Lines , 2018, Energies.

[5]  Li He,et al.  Accurate measurement of pavement deflection velocity under dynamic loads , 2017 .

[6]  Bo Fu,et al.  Research on the Predictive Optimal PID Plus Second Order Derivative Method for AGC of Power System with High Penetration of Photovoltaic and Wind Power , 2019, Journal of Electrical Engineering & Technology.

[7]  Wei Li,et al.  Control Algorithms of Magnetic Suspension Systems Based on the Improved Double Exponential Reaching Law of Sliding Mode Control , 2018, International Journal of Control, Automation and Systems.

[8]  F. Ma,et al.  Start-Up Process Modelling of Sediment Microbial Fuel Cells Based on Data Driven , 2019, Mathematical Problems in Engineering.

[9]  Y. Liu,et al.  Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems , 2012, J. Syst. Control. Eng..

[10]  Yufang Chang,et al.  Effective notch stress method for fatigue assessment of sheet alloy material and bi-material welded joints , 2020 .

[11]  Tao Yu,et al.  Parameter estimation for block‐oriented nonlinear systems using the key term separation , 2020, International Journal of Robust and Nonlinear Control.

[12]  Feng Ding,et al.  Hierarchical Principle-Based Iterative Parameter Estimation Algorithm for Dual-Frequency Signals , 2019, Circuits Syst. Signal Process..

[13]  Xiao Zhang,et al.  Hierarchical parameter and state estimation for bilinear systems , 2020, Int. J. Syst. Sci..

[14]  Bo Fu,et al.  Research on Automatic Generation Control with Wind Power Participation Based on Predictive Optimal 2-Degree-of-Freedom PID Strategy for Multi-area Interconnected Power System , 2018, Energies.

[15]  M. Farrokhi,et al.  Robust identification of MISO neuro‐fractional‐order Hammerstein systems , 2019, International Journal of Robust and Nonlinear Control.

[16]  Yuehong Su,et al.  A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization , 2019, Energies.

[17]  C. Yin,et al.  Optimality of the threshold dividend strategy for the compound Poisson model , 2011 .

[18]  Feng Ding,et al.  Parameter estimation with scarce measurements , 2011, Autom..

[19]  Yu Zhang,et al.  Reconfigurable equilibrium circuit with additional power supply , 2020 .

[20]  J. Voros Modeling and parameter identification of systems with multisegment piecewise-linear characteristics , 2002 .

[21]  Feng Ding,et al.  Recursive parameter estimation algorithm for multivariate output-error systems , 2018, J. Frankl. Inst..

[22]  Feng Ding,et al.  Hierarchical Least Squares Identification for Linear SISO Systems With Dual-Rate Sampled-Data , 2011, IEEE Transactions on Automatic Control.

[23]  Feng Ding,et al.  Filtering-Based Multistage Recursive Identification Algorithm for an Input Nonlinear Output-Error Autoregressive System by Using the Key Term Separation Technique , 2017, Circuits Syst. Signal Process..

[24]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[25]  Ahmed Alsaedi,et al.  Data filtering based maximum likelihood gradient estimation algorithms for a multivariate equation-error system with ARMA noise , 2020, J. Frankl. Inst..

[26]  Feng Ding,et al.  Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..

[27]  M. Dehghan,et al.  Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations , 2011 .

[28]  Guo-Ping Jiang,et al.  Weighted Parameter Estimation for Hammerstein Nonlinear ARX Systems , 2020, Circuits Syst. Signal Process..

[29]  Bo Fu,et al.  Quadratic stabilization of switched uncertain linear systems: a convex combination approach , 2019, IEEE/CAA Journal of Automatica Sinica.

[30]  Przemyslaw Sliwinski,et al.  Nonlinear system modeling based on constrained Volterra series estimates , 2017, ArXiv.

[31]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[32]  Ling Xu The parameter estimation algorithms based on the dynamical response measurement data , 2017 .

[33]  Xiaoxing Zhang,et al.  Application of C 6 F 12 O/CO 2 mixture in 10 kV medium‐voltage switchgear , 2019, IET Science, Measurement & Technology.

[34]  Meihang Li,et al.  Maximum Likelihood Least Squares Based Iterative Estimation for a Class of Bilinear Systems Using the Data Filtering Technique , 2020 .

[35]  Feng Ding,et al.  Combined state and least squares parameter estimation algorithms for dynamic systems , 2014 .

[36]  Nan Zhao,et al.  Joint Optimization of Cooperative Spectrum Sensing and Resource Allocation in Multi-channel Cognitive Radio Sensor Networks , 2016, Circuits Syst. Signal Process..

[37]  Junhong Li,et al.  Maximum likelihood identification of dual‐rate Hammerstein output‐error moving average system , 2020 .

[38]  Petre Stoica,et al.  Recursive nonlinear-system identification using latent variables , 2016, Autom..

[39]  Renbin Xiao,et al.  Control and Backbone Identification for the Resilient Recovery of a Supply Network Utilizing Outer Synchronization , 2019 .

[40]  Ying Shen,et al.  Exit problems for jump processes with applications to dividend problems , 2013, J. Comput. Appl. Math..

[41]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[42]  C. Yin,et al.  The Perturbed Compound Poisson Risk Process with Investment and Debit Interest , 2010 .

[43]  Chen Xu,et al.  Hybrid Model Predictive Control Strategy of Supercapacitor Energy Storage System Based on Double Active Bridge , 2019, Energies.

[44]  Feng Ding,et al.  An efficient hierarchical identification method for general dual-rate sampled-data systems , 2014, Autom..

[45]  Feng Ding,et al.  State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors , 2019, International Journal of Adaptive Control and Signal Processing.

[46]  W. Shi,et al.  Effects of Charge Transport Materials on Blue Fluorescent Organic Light-Emitting Diodes with a Host-Dopant System , 2019, Micromachines.

[47]  C. Yin,et al.  ON THE OPTIMAL DIVIDEND PROBLEM FOR A SPECTRALLY POSITIVE LÉVY PROCESS , 2013, ASTIN Bulletin.

[48]  Wei Chen,et al.  Reliability Analysis of Power and Communication Network in Drone Monitoring System , 2019, IEICE Trans. Commun..

[49]  Guo Xie,et al.  Fault Diagnosis of Train Plug Door Based on a Hybrid Criterion for IMFs Selection and Fractional Wavelet Package Energy Entropy , 2019, IEEE Transactions on Vehicular Technology.

[50]  C. Yin,et al.  Exact joint laws associated with spectrally negative Lévy processes and applications to insurance risk theory , 2011, 1101.0445.

[51]  F. Ding,et al.  Partially‐coupled least squares based iterative parameter estimation for multi‐variable output‐error‐like autoregressive moving average systems , 2019, IET Control Theory & Applications.

[52]  Guozhi Zhang,et al.  Ladder‐Wise calculation method for z‐coordinate of transformer PD source based on planar layout UHF antenna sensors , 2019, IEEJ Transactions on Electrical and Electronic Engineering.

[53]  Feng Ding,et al.  The filtering‐based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle , 2019, International Journal of Adaptive Control and Signal Processing.

[54]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[55]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[56]  C. Yin,et al.  Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs , 2014, 1409.0407.

[57]  Yan Ji,et al.  Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems , 2020, J. Frankl. Inst..

[58]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[59]  C. Yin,et al.  Optimal dividends problem with a terminal value for spectrally positive Levy processes , 2013, 1302.6011.

[60]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[61]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .

[62]  Jozef Vörös Parameter identification of Wiener systems with discontinuous nonlinearities , 2001, Syst. Control. Lett..

[63]  Yu Wang,et al.  Bidirectional Short-Circuit Current Blocker for DC Microgrid Based on Solid-State Circuit Breaker , 2020, Electronics.

[64]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[65]  Jing Chen,et al.  A new filter‐based stochastic gradient algorithm for dual‐rate ARX models , 2018, International Journal of Adaptive Control and Signal Processing.

[66]  Jianqiang Pan,et al.  A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems , 2017 .

[67]  Wan Xiangkui,et al.  A T-wave alternans assessment method based on least squares curve fitting technique , 2016 .

[68]  Xiangkui Wan,et al.  Two-stage Gradient-based Iterative Estimation Methods for Controlled Autoregressive Systems Using the Measurement Data , 2020, International Journal of Control, Automation and Systems.

[69]  C. Yin,et al.  An extension of Paulsen–Gjessing’s risk model with stochastic return on investments , 2013, 1302.6757.

[70]  Nan Zhao,et al.  Android-based mobile educational platform for speech signal processing , 2017 .

[71]  Yiyang Pei,et al.  Dynamic Contract Incentive Mechanism for Cooperative Wireless Networks , 2018, IEEE Transactions on Vehicular Technology.

[72]  Yuehong Su,et al.  Coordinated control strategy of DC microgrid with hybrid energy storage system to smooth power output fluctuation , 2020 .

[73]  Feng Liu,et al.  Bio-Inspired Speed Curve Optimization and Sliding Mode Tracking Control for Subway Trains , 2019, IEEE Transactions on Vehicular Technology.

[74]  W. Shi,et al.  Effects of Postannealing on the Characteristics and Reliability of Polyfluorene Organic Light-Emitting Diodes , 2019, IEEE Transactions on Electron Devices.

[75]  Feng Ding,et al.  Performance analysis of stochastic gradient algorithms under weak conditions , 2008, Science in China Series F: Information Sciences.

[76]  Jing Chen,et al.  Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter , 2017 .

[77]  Zipeng Zhang,et al.  Energy Disaggregation of Appliances Consumptions Using HAM Approach , 2019, IEEE Access.

[78]  T. Hayat,et al.  Hierarchical Parameter Estimation for the Frequency Response Based on the Dynamical Window Data , 2018, International Journal of Control, Automation and Systems.

[79]  Mimoun Zelmat,et al.  Modelling the nonlinear dynamic behaviour of a boiler‐turbine system using a radial basis function neural network , 2014 .

[80]  Wei Chen,et al.  A Data-Driven Based Framework of Model Optimization and Neural Network Modeling for Microbial Fuel Cells , 2019, IEEE Access.

[81]  F. Ma,et al.  Control Strategy for Adaptive Active Energy Harvesting in Sediment Microbial Fuel Cells , 2020 .

[82]  Feng Ding,et al.  Decomposition- and Gradient-Based Iterative Identification Algorithms for Multivariable Systems Using the Multi-innovation Theory , 2019, Circuits Syst. Signal Process..