An Update on Monitoring Stellar Orbits in the Galactic Center

Using 25 years of data from uninterrupted monitoring of stellar orbits in the Galactic Center, we present an update of the main results from this unique data set: a measurement of mass and distance to Sgr A*. Our progress is not only due to the eight-year increase in time base, but also to the improved definition of the coordinate system. The star S2 continues to yield the best constraints on the mass of and distance to Sgr A*; the statistical errors of and kpc have halved compared to the previous study. The S2 orbit fit is robust and does not need any prior information. Using coordinate system priors, the star S1 also yields tight constraints on mass and distance. For a combined orbit fit, we use 17 stars, which yields our current best estimates for mass and distance: and . These numbers are in agreement with the recent determination of R 0 from the statistical cluster parallax. The positions of the mass, of the near-infrared flares from Sgr A*, and of the radio source Sgr A* agree to within 1 mas. In total, we have determined orbits for 40 stars so far, a sample which consists of 32 stars with randomly oriented orbits and a thermal eccentricity distribution, plus eight stars that we can explicitly show are members of the clockwise disk of young stars, and which have lower-eccentricity orbits.

[1]  C.Dumas,et al.  SINFONI in the Galactic Center: young stars and IR flares in the central light month , 2005 .

[2]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[3]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[4]  K. Menten,et al.  Pinpointing the near-infrared location of Sgr A* by correcting optical distortion in the NACO imager , 2015, 1509.01941.

[5]  Jessica R. Lu,et al.  PROPERTIES OF THE REMNANT CLOCKWISE DISK OF YOUNG STARS IN THE GALACTIC CENTER , 2014, 1401.7354.

[6]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[7]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[8]  Norbert N. Hubin,et al.  Implementation of MACAO for SINFONI at the VLT, in NGS and LGS modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  Francois Rigaut,et al.  Design of the Nasmyth adaptive optics system (NAOS) of the VLT , 1998, Astronomical Telescopes and Instrumentation.

[10]  R. Genzel,et al.  THE NUCLEAR CLUSTER OF THE MILKY WAY: TOTAL MASS AND LUMINOSITY , 2013, Proceedings of the International Astronomical Union.

[11]  Jessica R. Lu,et al.  AN IMPROVED DISTANCE AND MASS ESTIMATE FOR SGR A* FROM A MULTISTAR ORBIT ANALYSIS , 2016, 1607.05726.

[12]  Jessica R. Lu,et al.  Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.

[13]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[14]  M. F. Radioastronomie,et al.  The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A* , 2004, astro-ph/0408107.

[15]  A. Seth,et al.  Large scale kinematics and dynamical modelling of the Milky Way nuclear star cluster , 2014, 1406.2849.

[16]  Melanie Johnston-Hollitt,et al.  FARADAY ROTATION STRUCTURE ON KILOPARSEC SCALES IN THE RADIO LOBES OF CENTAURUS A , 2009, 0910.3458.

[17]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[18]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[19]  Jessica R. Lu,et al.  The Shortest-Known–Period Star Orbiting Our Galaxy’s Supermassive Black Hole , 2012, Science.

[20]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[21]  Berkeley,et al.  The old Nuclear Star Cluster in the Milky Way , 2014, 1403.5266.

[22]  R. Genzel,et al.  THE ORBIT OF THE STAR S2 AROUND SGR A* FROM VERY LARGE TELESCOPE AND KECK DATA , 2009, 0910.3069.

[23]  Dimitrios Psaltis,et al.  A QUANTITATIVE TEST OF THE NO-HAIR THEOREM WITH Sgr A* USING STARS, PULSARS, AND THE EVENT HORIZON TELESCOPE , 2015, 1510.00394.

[24]  Reinhard Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[25]  Reinhard Genzel,et al.  Probing post-newtonian physics near the galactic black hole with stellar redshift measurements , 2005 .

[26]  S. Trippe,et al.  EVIDENCE FOR WARPED DISKS OF YOUNG STARS IN THE GALACTIC CENTER , 2008, 0811.3903.

[27]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[28]  A. Howard,et al.  EFFICIENT FITTING OF MULTIPLANET KEPLERIAN MODELS TO RADIAL VELOCITY AND ASTROMETRY DATA , 2009, 0904.3725.

[29]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM , 2009, 0902.3095.

[30]  G. Neugebauer,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003 .

[31]  Eric Agol,et al.  Viewing the Shadow of the Black Hole at the Galactic Center. , 2000 .

[32]  Peter Bizenberger,et al.  CONICA: the high-resolution near-infrared camera for the ESO VLT , 1998, Astronomical Telescopes and Instrumentation.

[33]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[34]  Clifford M. Will,et al.  Testing the General Relativistic “No-Hair” Theorems Using the Galactic Center Black Hole Sagittarius A* , 2007, 0711.1677.

[35]  R. Genzel,et al.  LINE DERIVED INFRARED EXTINCTION TOWARD THE GALACTIC CENTER , 2011, 1105.2822.