This article reports on the use of high-resolution electron energy loss spectroscopy (HREELS) for the investigation of as-grown (hydrogen-terminated) and oxidized nanocrystalline diamond films (NCD) using chemical, physical, and electrochemical approaches. The results indicate that the nature and number of oxygen-related chemical groups generated on the NCD surface depend strongly on the oxidation process. A high concentration of C-O functions has been obtained on the NCD surface oxidized by rf (radio frequency) oxygen plasma, whereas the highest C═O/C-O ratio has been achieved by electrochemical oxidation. The NCD surface oxidized by rf plasma was totally free of C═O groups. Traces of surface hydroxyl groups (C-OH) have been detected upon annealing in air or through UV/ozone oxidation.