Correspondences of Persistent Feature Points on Near-Isometric Surfaces

We present a full pipeline for finding corresponding points between two surfaces based on conceptually simple and computationally efficient components. Our pipeline begins with robust and stable extraction of feature points from the surfaces. We then find a set of near isometric correspondences between the feature points by solving an optimization problem using established components. The performance is evaluated on a large number of 3D models from the following perspectives: robustness w.r.t. isometric deformation, robustness w.r.t. noise and incomplete surfaces, partial matching, and anisometric deformation.

[1]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[2]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[3]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[4]  H. Seidel,et al.  Pattern-aware Deformation Using Sliding Dockers , 2011, SIGGRAPH 2011.

[5]  R. Forman Morse Theory for Cell Complexes , 1998 .

[6]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[7]  Leonidas J. Guibas,et al.  SHREC 2010: robust correspondence benchmark , 2010 .

[8]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[9]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[10]  Jun Wang,et al.  A 3D facial expression database for facial behavior research , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[11]  Takashi Matsuyama,et al.  Dynamic surface matching by geodesic mapping for 3D animation transfer , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[13]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[14]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[15]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[17]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[18]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[19]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[20]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  J. Costeira,et al.  Convex solution of a permutation problem , 2011 .

[22]  Tamal K. Dey,et al.  Persistent Heat Signature for Pose‐oblivious Matching of Incomplete Models , 2010, Comput. Graph. Forum.

[23]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[24]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .