Normal Characterization of the Main Classes of Quasiconvex Functions

In this article we explore the concept of the normal cone to the sublevel sets (or strict sublevel sets) of a function. By slightly modifying the original definition of Borde and Crouzeix, we obtain here a new (but strongly related to the already existent) notion of a normal operator. This technique turns out to be appropriate in Quasiconvex Analysis since it allows us to reveal characterizations of the various classes of quasiconvex functions in terms of the generalized quasimonotonicity of their `normal' multifunctions.

[1]  J. Benoist Connectedness of the Efficient Set for Strictly Quasiconcave Sets , 1998 .

[2]  Nicolas Hadjisavvas,et al.  Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions , 1999 .

[3]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .

[4]  J. Penot Are Generalized Derivatives Sseful for Generalized Convex Functions , 1998 .

[5]  Jacques A. Ferland,et al.  Criteria for quasi-convexity and pseudo-convexity: Relationships and comparisons , 1982, Math. Program..

[6]  E. Barron,et al.  Calculus of variations inL∞ , 1997 .

[7]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[8]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[9]  Didier Aussel Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach , 1998 .

[10]  J. P. Crouzeix,et al.  Continuity properties of the normal cone to the level sets of a quasiconvex function , 1990 .

[11]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[12]  E. N. Barron,et al.  Calculus of variations in L , 1997 .

[13]  S. Schaible Fractional programming: Applications and algorithms , 1981 .

[14]  Didier Aussel,et al.  Nonsmooth Constrained Optimization and Multidirectional Mean Value Inequalities , 1999, SIAM J. Optim..

[15]  Juan Enrique Martínez-Legaz,et al.  Quasiconvex duality theory by generalized conjugation methods , 1988 .

[16]  Didier Aussel,et al.  Subdifferential characterization of quasiconvexity and convexity , 1994 .

[17]  Schaible Siegfried,et al.  Generalized Monotonicity — Concepts and Uses , 1995 .

[18]  J. Penot Generalized Convexity in the Light of Nonsmooth Analysis , 1995 .

[19]  P. H. Quang,et al.  Generalized Convexity of Functions and Generalized Monotonicity of Set-Valued Maps , 1997 .

[20]  Nicolas Hadjisavvas,et al.  On the Subdifferentials of Quasiconvex and Pseudoconvex Functions and Cyclic Monotonicity , 1999 .

[21]  Derek Atkins,et al.  Multicriteria Programming for Financial Planning , 1979 .

[22]  Didier Aussel,et al.  Mean value property and subdifferential criteria for lower semicontinuous functions , 1995 .

[23]  E. N. Barron,et al.  Hopf–Lax-Type Formula forut+H(u, Du)=0 , 1996 .