Promises Make Finite (Constraint Satisfaction) Problems Infinitary

The fixed template Promise Constraint Satisfaction Problem (PCSP) is a recently proposed significant generalization of the fixed template CSP, which includes approximation variants of satisfiability and graph coloring problems. All the currently known tractable (i.e., solvable in polynomial time) PCSPs over finite templates can be reduced, in a certain natural way, to tractable CSPs. However, such CSPs are often over infinite domains. We show that the infinity is in fact necessary by proving that a specific finite-domain PCSP, namely (1-in-3-SAT, Not-All-Equal-3-SAT), cannot be naturally reduced to a tractable finite-domain CSP, unless P=NP.

[1]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[2]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[3]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[4]  Jakub Bulín,et al.  Algebraic approach to promise constraint satisfaction , 2018, STOC.

[5]  R. McKenzie,et al.  Optimal strong Mal’cev conditions for omitting type 1 in locally finite varieties , 2014 .

[6]  Venkatesan Guruswami,et al.  New Hardness Results for Graph and Hypergraph Colorings , 2016, CCC.

[7]  Libor Barto,et al.  The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[8]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[9]  Manuel Bodirsky,et al.  Constraint Satisfaction Problems over Numeric Domains , 2017, The Constraint Satisfaction Problem.

[10]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[11]  Libor Barto,et al.  Polymorphisms, and How to Use Them , 2017, The Constraint Satisfaction Problem.

[12]  Venkatesan Guruswami,et al.  An Algorithmic Blend of LPs and Ring Equations for Promise CSPs , 2018, SODA.

[13]  Libor Barto,et al.  The wonderland of reflections , 2015, Israel Journal of Mathematics.

[14]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[15]  Manuel Bodirsky Constraint Satisfaction Problems with Infinite Templates , 2008, Complexity of Constraints.

[16]  Michael Pinsker,et al.  Algebraic and model theoretic methods in constraint satisfaction , 2015, ArXiv.

[17]  Venkatesan Guruswami,et al.  Promise Constraint Satisfaction: Structure Theory and a Symmetric Boolean Dichotomy , 2018, SODA.

[18]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[19]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Manuel Bodirsky,et al.  Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.

[21]  Venkatesan Guruswami,et al.  (2+ε)-Sat Is NP-hard , 2014, SIAM J. Comput..

[22]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[23]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[24]  Libor Barto,et al.  Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem , 2012, Log. Methods Comput. Sci..

[25]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[26]  M. Siggers A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .