Fast Generation of Randomized Low-Discrepancy Point Sets
暂无分享,去创建一个
[1] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[2] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[3] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[4] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[5] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[6] Jon Louis Bentley,et al. Programming pearls (2nd ed.) , 1999 .
[7] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[8] Jon Louis Bentley,et al. Programming pearls , 1987, CACM.
[9] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[10] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[11] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[12] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[13] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[14] Art B. Owen,et al. Monte Carlo extension of quasi-Monte Carlo , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).
[15] I. A. Antonov,et al. An economic method of computing LPτ-sequences , 1979 .
[16] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[17] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[18] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.