Enhanced dust heating in the bulges of early-type spiral galaxies

Stellar density and bar strength should affect the temperatures of the cool (T ~ 20–30 K) dust component in the inner regions of galaxies, which implies that the ratio of temperatures in the circumnuclear regions to the disk should depend on Hubble type. We investigate the differences between cool dust temperatures in the central 3 kpc and disk of 13 nearby galaxies by fitting models to measurements between 70 and 500 μm. We attempt to quantify temperature trends in nearby disk galaxies, with archival data from Spitzer/MIPS and new observations with Herschel/SPIRE, which were acquired during the first phases of the Herschel observations for the KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel) sample. We fit single-temperature modified blackbodies to far-infrared and submillimeter measurements of the central and disk regions of galaxies to determine the temperature of the component(s) emitting at those wavelengths. We present the ratio of central-region-to-disk-temperatures of the cool dust component of 13 nearby galaxies as a function of morphological type. We find a significant temperature gradient in the cool dust component in all galaxies, with a mean center-to-disk temperature ratio of 1.15 ± 0.03. The cool dust temperatures in the central ~3 kpc of nearby galaxies are 23 (±3)% hotter for morphological types earlier than Sc, and only 9 (±3)% hotter for later types. The temperature ratio is also correlated with bar strength, with only strongly barred galaxies having a ratio over 1.2. The strong radiation field in the high stellar density of a galactic bulge tends to heat the cool dust component to higher temperatures, at least in early-type spirals with relatively large bulges, especially when paired with a strong bar.

[1]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[2]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[3]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[4]  B. Groves,et al.  Mapping far-IR emission from the central kiloparsec of NGC 1097 , 2010, 1005.1959.

[5]  B. Groves,et al.  Far-infrared line imaging of the starburst ring in NGC 1097 with the Herschel/PACS spectrometer , 2010, 1005.1611.

[6]  D. Calzetti,et al.  AN INVESTIGATION OF THE DUST CONTENT IN THE GALAXY PAIR NGC 1512/1510 FROM NEAR-INFRARED TO MILLIMETER WAVELENGTHS , 2010, 1001.1764.

[7]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[8]  Laboratoire d'Astrophysique de Marseille,et al.  RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. II. DERIVED DUST PROPERTIES , 2009, 0909.2658.

[9]  D. Calzetti,et al.  THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY , 2009, 0907.4722.

[10]  G. Rieke,et al.  SPITZER OBSERVATIONS OF COLD DUST GALAXIES , 2009, 0904.4244.

[11]  J. Knapen,et al.  On the morphology of sigma-drop galaxies , 2008, 0805.0222.

[12]  G. Rieke,et al.  The Behavior of the Aromatic Features in M101 H II Regions: Evidence for Dust Processing , 2008, 0804.3223.

[13]  L. Vanzi,et al.  Metallicity Effects on Dust Properties in Starbursting Galaxies , 2008, 0801.1700.

[14]  J. H. Knapen,et al.  A SINFONI VIEW OF GALAXY CENTERS: MORPHOLOGY AND KINEMATICS OF FIVE NUCLEAR STAR-FORMATION RINGS , 2007, 0710.4036.

[15]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[16]  J. Beeman,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. III. An Asteroid‐based Calibration of MIPS at 160 μm , 2007, 0707.2103.

[17]  Wm. A. Wheaton,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 μm Imaging , 2007, 0704.2196.

[18]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[19]  C. Leitherer,et al.  An Ultraviolet-to-Radio Broadband Spectral Atlas of Nearby Galaxies , 2006, astro-ph/0610688.

[20]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[21]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[22]  U. Nottingham,et al.  The SCUBA Local Universe Galaxy Survey - III. Dust along the Hubble sequence , 2005, astro-ph/0510768.

[23]  Caltech,et al.  Starbursting nuclear CO disks of early-type spiral galaxies , 2004, astro-ph/0412274.

[24]  J. Knapen Structure and star formation in disk galaxies III. Nuclear and circumnuclear Hα emission , 2004, astro-ph/0409031.

[25]  W. Gear,et al.  Dust in spiral galaxies: global properties , 2004, astro-ph/0411721.

[26]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[27]  L. Dunne,et al.  Revised masses of dust and gas of SCUBA Local Universe Survey far-infrared bright galaxies based on a recent CO survey , 2004, astro-ph/0401602.

[28]  R. Laureijs,et al.  The complete submillimetre spectrum of NGC 891 , 2003, astro-ph/0305230.

[29]  R. Laureijs,et al.  Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies , 2003, astro-ph/0303576.

[30]  J. M. Rodríguez Espinosa,et al.  The Spatial Distribution of the Far-Infrared Emission in NGC 253 , 2002, astro-ph/0205167.

[31]  L. Sparke,et al.  Double Bars, Inner Disks, and Nuclear Rings in Early-Type Disk Galaxies , 2002, astro-ph/0203514.

[32]  M. Radovich,et al.  Far-infrared mapping of the starburst galaxy NGC 253 with ISOPHOT ? , 2001, astro-ph/0108075.

[33]  Loretta Dunne,et al.  The SCUBA Local Universe Galaxy Survey – II. 450‐μm data: evidence for cold dust in bright IRAS galaxies , 2001, astro-ph/0106362.

[34]  N. S. F. Center,et al.  THE COSMIC INFRARED BACKGROUND: Measurements and Implications ⁄ , 2001, astro-ph/0105539.

[35]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[36]  Hawaii,et al.  The impact of bars on the mid-infrared dust emission of spiral galaxies: global and circumnuclear properties , 2001, astro-ph/0104087.

[37]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[38]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[39]  Caltech,et al.  Bar-driven Transport of Molecular Gas to Galactic Centers and Its Consequences , 1999, astro-ph/9906454.

[40]  M. Malkan,et al.  Morphology of the 12 Micron Seyfert Galaxies. I. Hubble Types, Axial Ratios, Bars, and Rings , 1999, astro-ph/9901410.

[41]  Alexei V. Filippenko,et al.  A Search for “Dwarf'' Seyfert Nuclei. III. Spectroscopic Parameters and Properties of the Host Galaxies , 1997, astro-ph/9704107.

[42]  C. M. Mountain,et al.  Enhanced star formation ― The importance of bars in spiral galaxies , 1986 .