Optical tweezers: Theory and modelling

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  P. Debye,et al.  Der Lichtdruck auf Kugeln von beliebigem Material , 2014 .

[3]  Fernando Moreno,et al.  Light Scattering from Microstructures , 2013 .

[4]  G. Gouesbet A scientific story of generalized Lorenz–Mie theories with epistemological remarks , 2013 .

[5]  J. Lock Beam shape coefficients of the most general focused Gaussian laser beam for light scattering applications , 2013 .

[6]  B. Stout,et al.  Laser–particle interactions in shaped beams: Beam power normalization , 2013 .

[7]  Warwick P. Bowen,et al.  A computational tool to characterize particle tracking measurements in optical tweezers , 2013, 2105.12330.

[8]  Norman R. Heckenberg,et al.  Optically trapped and driven paddle-wheel , 2013 .

[9]  Halina Rubinsztein-Dunlop,et al.  Calibration of nonspherical particles in optical tweezers using only position measurement. , 2013, Optics letters.

[10]  J. Lock,et al.  List of problems for future research in generalized Lorenz-Mie theories and related topics, review and prospectus [invited]. , 2013, Applied optics.

[11]  Timo A. Nieminen,et al.  Optical tweezers toolbox: better, faster, cheaper; choose all three , 2012, NanoScience + Engineering.

[12]  Halina Rubinsztein-Dunlop,et al.  Equilibrium orientations and positions of non-spherical particles in optical traps. , 2012, Optics express.

[13]  H. Rubinsztein-Dunlop,et al.  Phase-transition-like properties of double-beam optical tweezers. , 2011, Physical review letters.

[14]  Simon Hanna,et al.  Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. , 2011, Optics express.

[15]  R. Pfeifer,et al.  Optical tweezers and paradoxes in electromagnetism , 2011 .

[16]  Norman R. Heckenberg,et al.  T-matrix method for modelling optical tweezers , 2011 .

[17]  Gérard Gréhan,et al.  Generalized Lorenz-Mie Theories , 2011 .

[18]  C. Hawes,et al.  Optical tweezers for the micromanipulation of plant cytoplasm and organelles. , 2010, Current opinion in plant biology.

[19]  G. Gouesbet,et al.  Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems: III. Special values of Euler angles , 2010 .

[20]  G. Gouesbet,et al.  Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systems I. General formulation , 2010 .

[21]  G. Gouesbet,et al.  Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems: II. Axisymmetric beams , 2010 .

[22]  Gérard Gréhan,et al.  Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves , 2010 .

[23]  Larry D. Travis,et al.  T-matrix method and its applications to electromagnetic scattering by particles: A current perspective , 2010 .

[24]  Gérard Gouesbet,et al.  T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates , 2010 .

[25]  G. Gouesbet On the optical theorem and non-plane-wave scattering in quantum mechanics , 2009 .

[26]  Gérard Gouesbet,et al.  Generalized Lorenz-Mie theories, the third decade: A perspective , 2009 .

[27]  Norman R. Heckenberg,et al.  Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization , 2009 .

[28]  Norman R. Heckenberg,et al.  Optimization of optically-driven micromachines , 2009, NanoScience + Engineering.

[29]  J. Chen,et al.  FDTD approach to optical forces of tightly focused vector beams on metal particles. , 2009, Optics express.

[30]  Jonathan M. Taylor,et al.  Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Halina Rubinsztein-Dunlop,et al.  T-matrix calculation via discrete-dipole approximation, point matching and exploiting symmetry , 2008, 0812.2040.

[32]  Halina Rubinsztein-Dunlop,et al.  The effect of Mie resonances on trapping in optical tweezers. , 2008, Optics express.

[33]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[34]  Tofigh Heidarzadeh,et al.  A History of Physical Theories of Comets, From Aristotle to Whipple , 2008 .

[35]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[36]  H. Rubinsztein-Dunlop,et al.  Antireflection coating for improved optical trapping , 2008 .

[37]  Halina Rubinsztein-Dunlop,et al.  Forces in optical tweezers with radially and azimuthally polarized trapping beams. , 2008, Optics letters.

[38]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[39]  Shunichi Sato,et al.  Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. , 2007, Optics letters.

[40]  Norman R. Heckenberg,et al.  FDFD/T-matrix hybrid method , 2007 .

[41]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[42]  H. Rubinsztein-Dunlop,et al.  Measurement of the index of refraction of single microparticles. , 2006, Physical review letters.

[43]  Carlos L. Cesar,et al.  Exact partial wave expansion of optical beams with respect to arbitrary origin , 2006, SPIE Optics + Photonics.

[44]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.

[45]  H. Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[47]  Michael Kahnert,et al.  Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  S. Barnett,et al.  Local transfer of optical angular momentum to matter , 2005 .

[49]  R. Gauthier,et al.  Computation of the optical trapping force using an FDTD based technique. , 2005, Optics express.

[50]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. , 2004, Applied optics.

[51]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force. , 2004, Applied optics.

[52]  P. A. Maia Neto,et al.  Theory of trapping forces in optical tweezers , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  H. Rubinsztein-Dunlop,et al.  Optical trapping of absorbing particles , 2003, physics/0310022.

[54]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[55]  D. Grier A revolution in optical manipulation , 2003, Nature.

[56]  H. Rubinsztein-Dunlop,et al.  Multipole Expansion of Strongly Focussed Laser Beams , 2003, physics/0308111.

[57]  H. Rubinsztein-Dunlop,et al.  Calculation of the T-matrix: general considerations and application of the point-matching method , 2003, physics/0308112.

[58]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[59]  Ramani Duraiswami,et al.  Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation , 2003, SIAM J. Sci. Comput..

[60]  K. Stamnes,et al.  Surface-integral formulation for electromagnetic scattering in spheroidal coordinates , 2003 .

[61]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[62]  José García de la Torre,et al.  Brownian dynamics simulation of rigid particles of arbitrary shape in external fields. , 2002, Biophysical journal.

[63]  C. Wieman,et al.  BOSE-EINSTEIN CONDENSATION IN A DILUTE GAS; THE FIRST 70 YEARS AND SOME RECENT EXPERIMENTS , 2002 .

[64]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[65]  W. Ketterle When atoms behave as waves: Bose-Einstein condensation and the atom laser (Nobel Lecture). , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[66]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[67]  D. Mackowski,et al.  Discrete dipole moment method for calculation of the T matrix for nonspherical particles. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[68]  A G Hoekstra,et al.  Radiation forces in the discrete-dipole approximation. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[69]  L. Mees,et al.  Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses , 2001 .

[70]  L. Mees,et al.  Scattering of laser pulses (plane wave and focused gaussian beam) by spheres. , 2001, Applied optics.

[71]  H. Rubinsztein-Dunlop,et al.  Optical measurement of microscopic torques , 2001, physics/0308103.

[72]  G. Gouesbet,et al.  Generic Formulation of a Generalized Lorenz‐Mie Theory for a Particle Illuminated by Laser Pulses , 2000 .

[73]  B. C. Brock Using Vector Spherical Harmonics to Compute Antenna Mutual Impedance from Measured or Computed Fields , 2000 .

[74]  Miles J. Padgett,et al.  Light with a twist in its tail , 2000 .

[75]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[76]  D. White Vector finite element modeling of optical tweezers , 2000 .

[77]  P. C. Chaumet,et al.  Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate , 2000, physics/0305042.

[78]  D. White Numerical Modeling of Optical Gradient Traps Using the Vector Finite Element Method , 2000 .

[79]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[80]  H. Nussenzveig,et al.  Theory of optical tweezers , 1999, physics/9909064.

[81]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[82]  Gérard Gouesbet,et al.  VALIDITY OF THE LOCALIZED APPROXIMATION FOR ARBITRARY SHAPED BEAMS IN THE GENERALIZED LORENZ-MIE THEORY FOR SPHERES , 1999 .

[83]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[84]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[85]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[86]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[87]  G. Gouesbet,et al.  Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres. , 1997, Applied optics.

[88]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[89]  A. Doicu,et al.  Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions. , 1997, Applied optics.

[90]  Kristopher T. Kim The translation formula for vector multipole fields and the recurrence relations of the translation coefficients of scalar and vector multipole fields , 1996 .

[91]  Martin Head-Gordon,et al.  Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .

[92]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[93]  B. U. Felderhof,et al.  Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field , 1996 .

[94]  Joseph T. Hodges,et al.  Generalized optical theorem for on-axis Gaussian beams , 1996 .

[95]  G Gouesbet,et al.  Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory. , 1996, Applied optics.

[96]  G. Gouesbet Partial-wave expansions and properties of axisymmetric light beams. , 1996, Applied optics.

[97]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[98]  J. Hodges,et al.  Failure of the optical theorem for Gaussian-beam scattering by a spherical particle , 1995 .

[99]  Miles J. Padgett,et al.  The Poynting vector in Laguerre-Gaussian laser modes , 1995 .

[100]  G. Gréhan,et al.  Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. , 1995, Applied optics.

[101]  G. Gouesbet,et al.  Trapping and levitation of a dielectric sphere with off-centred Gaussian beams. II. GLMT analysis , 1995 .

[102]  Kuan Fang Ren,et al.  Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects , 1994 .

[103]  G. Nienhuis,et al.  Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields , 1994 .

[104]  M W Berns,et al.  Parametric study of the forces on microspheres held by optical tweezers. , 1994, Applied optics.

[105]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[106]  T. Lindmo,et al.  Calculation of the trapping force in a strongly focused laser beam , 1992 .

[107]  H. Rubinsztein-Dunlop,et al.  Laser beams with phase singularities , 1992 .

[108]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[109]  V. Rokhlin,et al.  The fast multipole method (FMM) for electromagnetic scattering problems , 1992 .

[110]  G. Gouesbet,et al.  Optical levitation experiments to assess the validity of the generalized Lorenz-Mie theory. , 1992, Applied optics.

[111]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[112]  S. Allison A Brownian dynamics algorithm for arbitrary rigid bodies. Application to polarized dynamic light scattering , 1991 .

[113]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[114]  Gérard Gréhan,et al.  Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation , 1988 .

[115]  J. P. Barton,et al.  Internal and near‐surface electromagnetic fields for a spherical particle irradiated by a focused laser beam , 1988 .

[116]  Gérard Gréhan,et al.  A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile , 1988 .

[117]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[118]  Gérard Gréhan,et al.  Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism , 1985 .

[119]  G. Gouesbet,et al.  On the scattering of light by a Mie scatter center located on the axis of an axisymmetric light profile , 1982 .

[120]  J. García de la Torre,et al.  Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications , 1981, Quarterly Reviews of Biophysics.

[121]  G. Gouesbet,et al.  Optical levitation of a single particle to study the theory of the quasi-elastic scattering of light. , 1980, Applied optics.

[122]  G. Roosen La lévitation optique de sphères , 1979 .

[123]  L. W. Davis,et al.  Theory of electromagnetic beams , 1979 .

[124]  R. Tough The transformation properties of vector multipole fields under a translation of coordinate origin , 1977 .

[125]  G Roosen,et al.  Radiation pressure exerted by a light beam on refractive spheres: theoretical and experimental study , 1977 .

[126]  中西 襄 J.M.Jauch and F.Rohrlich, The Theory of Photons and Electrons, 2nd ed., Springer-Verlag, New York and Heidelberg, 1976, xix+553ページ,24×16cm, 6,560円(Text and Monographs in Physics). , 1977 .

[127]  G. Roosen,et al.  Optical levitation by means of two horizontal laser beams: A theoretical and experimental study , 1976 .

[128]  Robert T. Beyer,et al.  Radiation pressure—the history of a mislabeled tensor , 1976 .

[129]  E. Frankel Corpuscular Optics and the Wave Theory of Light: The Science and Politics of a Revolution in Physics , 1976 .

[130]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[131]  Staffan Ström,et al.  T-matrix formulation of electromagnetic scattering from multilayered scatterers , 1974 .

[132]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[133]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[134]  Y. Lo,et al.  Multiple scattering of EM waves by spheres part I--Multipole expansion and ray-optical solutions , 1971 .

[135]  J. Bruning,et al.  Multiple scattering of EM waves by spheres part II--Numerical and experimental results , 1971 .

[136]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[137]  H. Haus,et al.  The force density in polarizable and magnetizable fluids , 1966 .

[138]  L A B A M Clyde Hardin,et al.  The scientific work of the reverend John Michell , 1966 .

[139]  H. Haus,et al.  Electromagnetic force density , 1966 .

[140]  P. Waterman Matrix formulation of electromagnetic scattering , 1965 .

[141]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[142]  O. Cruzan Translational addition theorems for spherical vector wave functions , 1962 .

[143]  S. Stein ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS , 1961 .

[144]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[145]  F. Rohrlich,et al.  The Theory of Photons and Electrons , 1956 .

[146]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[147]  J. Humblet,et al.  Sur le moment d'impulsion d'une onde électromagnétique , 1943 .

[148]  H. P. Robertson,et al.  Dynamical Effects of Radiation in the Solar System , 1937 .

[149]  E. F. Nichols,et al.  A Preliminary Communication on the Pressure of Heat and Light Radiation , 1901 .

[150]  A. Bartoli Il calorico raggiante e il secondo principio di termodinamica , 1884 .

[151]  W. Crookes On Attraction and Repulsion accompanying Radiation , 1874 .

[152]  J. Lock,et al.  Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models , 2011 .

[153]  Simon Parkin,et al.  Optical Vortex Trapping and the Dynamics of Particle Rotation , 2008 .

[154]  Michael W Berns,et al.  Optical tweezers: tethers, wavelengths, and heat. , 2007, Methods in cell biology.

[155]  C. cohen-tannoudji,et al.  Manipulating atoms with photons , 1998 .

[156]  M. Mishchenko,et al.  T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database , 2004 .

[157]  E. Riis,et al.  Laser cooling and trapping of neutral atoms , 1997 .

[158]  Matthew J Lang,et al.  Resource Letter: LBOT-1: Laser-based optical tweezers. , 2003, American journal of physics.

[159]  G. Videen Light Scattering from a Sphere Near a Plane Interface , 2000 .

[160]  James H. Crichton,et al.  THE MEASURABLE DISTINCTION BETWEEN THE SPIN AND ORBITAL ANGULAR MOMENTA OF ELECTROMAGNETIC RADIATION , 2000 .

[161]  Klaus Schulten,et al.  The fast multipole algorithm , 2000, Comput. Sci. Eng..

[162]  Yu-lin Xu,et al.  Efficient Evaluation of Vector Translation Coefficients in Multiparticle Light-Scattering Theories , 1998 .

[163]  S. Chu The manipulation of neutral particles , 1998 .

[164]  V. Constantinescu Laminar viscous flow , 1995 .

[165]  G. J. Brakenhoff,et al.  Theoretical study of optically induced forces on spherical particles in a single beam trap. I: Rayleight scatterers , 1992 .

[166]  G. Gouesbet,et al.  Expressions to compute the coefficients gmnin the generalized Lorenz-Mie theory using finite series , 1988 .

[167]  D. Soper Classical field theory , 1976 .

[168]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[169]  F. A. Tsander Problems of flight by jet propulsion , 1964 .

[170]  J. Maxwell VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[171]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[172]  Peter Lebedew Experimental Investigation of the Pressure of Light , 1902 .

[173]  E. F. Nichols,et al.  Pressure Due to Light and Heat Radiation , 1902 .

[174]  Oliver Heaviside,et al.  V. On the forces, stresses, and fluxes of energy in the electromagnetic field , 1892, Proceedings of the Royal Society of London.

[175]  J. H. Poynting XV. On the transfer of energy in the electromagnetic field , 1884, Philosophical Transactions of the Royal Society of London.

[176]  W. Crookes II. On repulsion resulting from radiation. Part V , 1878, Proceedings of the Royal Society of London.

[177]  William Crookes,et al.  XV. On attraction and repulsion resulting from radiation , 1874, Philosophical Transactions of the Royal Society of London.

[178]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[179]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[180]  J. Liouville,et al.  Note sur la Théorie de la Variation des constantes arbitraires. , 1838 .