Output feedback trajectory stabilization of the uncertainty DC servomechanism system.

This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system.

[1]  Shaocheng Tong,et al.  Adaptive Neural Output Feedback Controller Design With Reduced-Order Observer for a Class of Uncertain Nonlinear SISO Systems , 2011, IEEE Transactions on Neural Networks.

[2]  Yu-Sheng Lu,et al.  Sliding-mode repetitive learning control with integral sliding-mode perturbation compensation. , 2009, ISA transactions.

[3]  Antonio Concha Sánchez,et al.  Algebraic identification of a DC servomechanism using a Least Squares algorithm , 2011, Proceedings of the 2011 American Control Conference.

[4]  Hebertt Sira-Ramírez,et al.  A dynamical variable structure control strategy in asymptotic output tracking problems , 1993, IEEE Trans. Autom. Control..

[5]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[6]  Yuri B. Shtessel,et al.  Higher order sliding modes , 2008 .

[7]  Alexander S. Poznyak,et al.  Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization , 2009, Autom..

[8]  Warren E. Dixon,et al.  Global robust output feedback tracking control of robot manipulators , 2004, Robotica.

[9]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[10]  Keum-Shik Hong,et al.  Stabilization and tracking control for a class of nonlinear systems , 2011 .

[11]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[12]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[13]  L. Fridman,et al.  Observation and Identification of Mechanical Systems via Second Order Sliding Modes , 2006, International Workshop on Variable Structure Systems, 2006. VSS'06..

[14]  Leonid M. Fridman,et al.  Two-Stage Neural Observer for Mechanical Systems , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  A. Zinober,et al.  Continuous approximation of variable structure control , 1986 .

[16]  Ruben Garrido,et al.  DC servomechanism parameter identification: a Closed Loop Input Error approach. , 2012, ISA transactions.

[17]  Andrej Sarjaš,et al.  Strong stabilization servo controller with optimization of performance criteria. , 2011, ISA transactions.

[18]  A. Levant Universal SISO sliding-mode controllers with finite-time convergence , 2001 .

[19]  M. Yazdanpanah,et al.  A novel low chattering sliding mode controller , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[20]  Alessandro Astolfi,et al.  Nonlinear PI control of uncertain systems: an alternative to parameter adaptation , 2002, Syst. Control. Lett..

[21]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[22]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[23]  Leonid Fridman,et al.  Finite-time convergence analysis for “Twisting” controller via a strict Lyapunov function , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[24]  Ilyas Eker,et al.  Second-order sliding mode control with experimental application. , 2010, ISA transactions.

[25]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[26]  Alessandro Astolfi,et al.  Nonlinear PI Control of Uncertain Systems , 2008 .

[27]  Ilyas Eker,et al.  Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. , 2006, ISA transactions.

[28]  Hocine Imine Sliding Mode Based Analysis and Identification of Vehicle Dynamics , 2011 .

[29]  Alejandro Dávila,et al.  Variable gains super-twisting algorithm: A Lyapunov based design , 2010, Proceedings of the 2010 American Control Conference.

[30]  Shaocheng Tong,et al.  Adaptive Neural Output Feedback Tracking Control for a Class of Uncertain Discrete-Time Nonlinear Systems , 2011, IEEE Transactions on Neural Networks.