Ultrasensitive Pressure Detection of Few‐Layer MoS2

Ultrasensitive pressure sensors are constructed with few-layer MoS2 films. As-designed Fabry-Perot (F-P) sensors exhibit nearly synchronous pressure-deflection responses with a very high sensitivity (89.3 nm Pa-1 ), which is three orders of magnitude higher than those of conventional diaphragm materials (e.g., silica, silver films). This kind of F-P sensor may open up new avenues for 2D materials in biomedical and environmental applications.

[1]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[2]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[3]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[4]  H. Bender,et al.  Multilayer MoS2 growth by metal and metal oxide sulfurization , 2016 .

[5]  Jun Lou,et al.  CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage , 2014 .

[6]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[7]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[8]  Shangchun Fan,et al.  Analyzing the applicability of miniature ultra-high sensitivity Fabry–Perot acoustic sensor using a nanothick graphene diaphragm , 2015 .

[9]  Ming Han,et al.  High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm. , 2012, Optics letters.

[10]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[11]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[12]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[13]  Shangchun Fan,et al.  Measurement of thermal expansion coefficient of graphene diaphragm using optical fiber Fabry–Perot interference , 2016 .

[14]  C. Liao,et al.  Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement. , 2014, Optics letters.

[15]  Sung Kim,et al.  Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers , 2014 .

[16]  J. Shan,et al.  High frequency MoS2 nanomechanical resonators. , 2013, ACS nano.

[17]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.

[18]  J. Zhong,et al.  Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition , 2014 .

[19]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[20]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[21]  Miao Yu,et al.  Hybrid Miniature Fabry–Perot Sensor with Dual Optical Cavities for Simultaneous Pressure and Temperature Measurements , 2014, Journal of Lightwave Technology.

[22]  Shangchun Fan,et al.  Fiber-Optic Fabry–Pérot Acoustic Sensor With Multilayer Graphene Diaphragm , 2013, IEEE Photonics Technology Letters.

[23]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[25]  M. Dresselhaus,et al.  Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more , 2015 .

[26]  Yong Ju Park,et al.  MoS2‐Based Tactile Sensor for Electronic Skin Applications , 2016, Advanced materials.

[27]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[28]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[29]  E. Vogel,et al.  Resonant Light-Induced Heating in Hybrid Cavity-Coupled 2D Transition-Metal Dichalcogenides , 2016 .

[30]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[31]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[32]  Christopher Niezrecki,et al.  Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. , 2010, Optics express.

[33]  C. Zhang,et al.  Graphene based piezoresistive pressure sensor , 2013 .

[34]  M. Tang,et al.  Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics , 2015, Advanced materials.

[35]  W. Jin,et al.  Measurement of the Adhesion Energy of Pressurized Graphene Diaphragm Using Optical Fiber Fabry–Perot Interference , 2016, IEEE Sensors Journal.

[36]  Il-Kwon Oh,et al.  Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. , 2014, Nanoscale.

[37]  Single‐Layer MoS2 Mechanical Resonators , 2013, Advanced materials.

[38]  Jihan Kim,et al.  Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers. , 2015, ACS nano.

[39]  Samuel Graham,et al.  Highly Uniform Trilayer Molybdenum Disulfide for Wafer‐Scale Device Fabrication , 2014 .

[40]  Feng Xu,et al.  High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm. , 2012, Optics letters.

[41]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[42]  Sefaattin Tongay,et al.  Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.

[43]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[44]  Lai-Peng Ma,et al.  Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. , 2013, ACS nano.

[45]  Jun Ma,et al.  High-sensitivity fiber-tip pressure sensor with graphene diaphragm. , 2012, Optics letters.

[46]  Andres Castellanos-Gomez,et al.  Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2 , 2012, Nanoscale Research Letters.