Yang-Baxter Graphs, Jack and Macdonald Polynomials

Abstract. We describe properties of the affine graph underlying the recursions between the different varieties of nonsymmetric Macdonald and Jack polynomials. We use an arbitrary function of one variable in the definition of affine edges, and of Cherednik's elements, to unify the different theories. We describe the symmetrizing operators furnishing the symmetric polynomials from the nonsymmetric ones.

[1]  A. Lascoux,et al.  Symmetrization operators on polynomial rings , 1987 .

[2]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[3]  Luc Lapointe,et al.  A Rodrigues formula for the Jack polynomials and the Macdonald-Stanley conjecture , 1995 .

[4]  I. G. MacDonald,et al.  Affine Hecke Algebras and Orthogonal Polynomials , 2003 .

[5]  T. H. Baker,et al.  A q-analogue of the type A Dunkl operator and integral kernel , 1997, q-alg/9701039.

[6]  Siddhartha Sahi,et al.  A recursion and a combinatorial formula for Jack polynomials , 1996 .

[7]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[8]  E. Opdam Harmonic analysis for certain representations of graded Hecke algebras , 1995 .

[9]  Alain Lascoux,et al.  Symmetry and flag manifolds , 1983 .

[10]  Raising Operators of Row Type for Macdonald Polynomials , 1998, Compositio Mathematica.

[11]  Friedrich Knop,et al.  Symmetric and non-symmetric quantum Capelli polynomials , 1996, q-alg/9603028.

[12]  George Lusztig,et al.  Affine Hecke algebras and their graded version , 1989 .

[13]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[14]  I. Cherednik Integration of Quantum Many-Body Problems by Affine Knizhnik-Zamolodchikov Equations , 1994 .

[15]  I. Gel'fand,et al.  SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P , 1973 .

[16]  $q$-Difference raising operators for Macdonald polynomials and the integrality of transition coefficients , 1996, q-alg/9605005.

[17]  T. H. Baker,et al.  Symmetric Jack polynomials from non-symmetric theory , 1997 .

[18]  Flag Varieties and the Yang-Baxter Equation , 1996, q-alg/9607015.

[19]  Siddhartha Sahi,et al.  Interpolation, Integrality, and a Generalization of Macdonald's Polynomials , 1996 .

[20]  I. G. MacDonald,et al.  Notes on Schubert polynomials , 1991 .

[21]  Twisted action of the symmetric group on the cohomology of a flag manifold , 1996 .

[22]  The binomial formula for nonsymmetric Macdonald polynomials , 1997, q-alg/9703024.

[23]  A. Vershik,et al.  A new approach to representation theory of symmetric groups , 1996 .

[24]  Anatol N. Kirillov,et al.  Affine Hecke algebras and raising operators for Macdonald polynomials , 1996 .

[25]  Creation Operators for the Macdonald and Jack Polynomials , 1996, q-alg/9607024.

[26]  Jyoichi Kaneko $q$-Selberg integrals and Macdonald polynomials , 1996 .

[27]  Sergey Fomin,et al.  The Yang-Baxter equation, symmetric functions, and Schubert polynomials , 1996, Discret. Math..

[28]  A new scalar product for nonsymmetric Jack polynomials , 1996, q-alg/9608013.

[29]  Ivan Cherednik,et al.  Nonsymmetric Macdonald polynomials , 1995 .

[30]  A. Lascoux,et al.  Determinantal expressions for Macdonald polynomials , 1998 .

[31]  Difference equations and symmetric polynomials defined by their zeros , 1996 .

[32]  Friedrich Knop,et al.  Integrality of two variable Kostka functions. , 1996, q-alg/9603027.

[33]  K. Mimachi,et al.  A reproducing kernel for nonsymmetric Macdonald polynomials , 1996, q-alg/9610014.

[34]  Local algebras and a new version of Young's orthogonal form , 1990 .