Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon

[1]  Jingkai Yang,et al.  Microstructure and mechanical properties of high-carbon Si–Al-rich steel by low-temperature austempering , 2012 .

[2]  H. Roelofs,et al.  Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels , 2012 .

[3]  J. Yang,et al.  Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels , 2011 .

[4]  P. Hodgson,et al.  Nanoscale microstructural characterization of a nanobainitic steel , 2011 .

[5]  T. Wang,et al.  Design of a new nanostructured, high-Si bainitic steel with lower cost production , 2011 .

[6]  D. Ponge,et al.  Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability , 2011 .

[7]  J. Jiménez,et al.  On measurement of carbon content in retained austenite in a nanostructured bainitic steel , 2011, Journal of Materials Science.

[8]  V. Kuokkala,et al.  Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate , 2010 .

[9]  D. Suh,et al.  Strain partitioning and mechanical stability of retained austenite , 2010 .

[10]  A. Clarke,et al.  Examination of carbon partitioning into austenite during tempering of bainite , 2010 .

[11]  F. Caballero,et al.  Carbon supersaturation of ferrite in a nanocrystalline bainitic steel , 2010 .

[12]  M. Santofimia,et al.  Theoretical design and advanced microstructure in super high strength steels , 2009 .

[13]  C. Capdevila,et al.  Phase transformation theory: A powerful tool for the design of advanced steels , 2008 .

[14]  C. Capdevila,et al.  Effects of Morphology and Stability of Retained Austenite on the Ductility of TRIP-aided Bainitic Steels , 2008 .

[15]  O. Bouaziz,et al.  Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel , 2008 .

[16]  K. Sugimoto,et al.  Effects of Aluminum on Delayed Fracture Properties of Ultra High Strength Low Alloy TRIP-aided Steels , 2008 .

[17]  D. Matlock,et al.  Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment , 2008 .

[18]  F. Delannay,et al.  Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling , 2007 .

[19]  H. Bhadeshia Bessemer Memorial Lecture: The dimensions of steel , 2007 .

[20]  F. Caballero,et al.  Design of carbide-free low-temperature ultra high strength bainitic steels , 2007 .

[21]  S. Babu,et al.  Atomic scale observations of bainite transformation in a high carbon high silicon steel , 2007 .

[22]  H. Bhadeshia,et al.  Bimodal size-distribution of bainite plates , 2006 .

[23]  C. Capdevila,et al.  Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and T0 Curves , 2006 .

[24]  M. Sherif Characterisation and Development of Nanostructured, Ultrahigh Strength, and Ductile Bainitic Steels , 2006 .

[25]  Francisca García Caballero,et al.  Ultra-high-strength Bainitic Steels , 2005 .

[26]  F. Caballero,et al.  The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures , 2005 .

[27]  Olivier Bouaziz,et al.  Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys , 2004 .

[28]  H. Bhadeshia,et al.  Formation of nanostructured steels by phase transformation , 2004 .

[29]  M. J. Peet,et al.  Tempering of hard mixture of bainitic ferrite and austenite , 2004 .

[30]  H. Bhadeshia,et al.  Very strong bainite , 2004 .

[31]  T. Sourmail,et al.  Stability of retained austenite in TRIP-assisted steels , 2004 .

[32]  H. Bhadeshia,et al.  Acceleration of Low-temperature Bainite , 2003 .

[33]  H. Bhadeshia,et al.  Development of Hard Bainite , 2003 .

[34]  Alan Dinsdale,et al.  MTDATA - thermodynamic and phase equilibrium software from the National Physical Laboratory , 2002 .

[35]  Francisca García Caballero,et al.  Very strong low temperature bainite , 2002 .

[36]  F. Delannay,et al.  The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Al-alloyed TRIP-assisted Multiphase Steels , 2001 .

[37]  H. Bhadeshia,et al.  Estimation of bainite plate-thickness in low-alloy steels , 1998 .

[38]  T. Hsu,et al.  Gibbs free energy evaluation of the FCC(γ) and HCP(ε) phases in Fe-MN-Si alloys , 1997 .

[39]  H. Bhadeshia,et al.  Austenite films in bainitic microstructures , 1995 .

[40]  H. Bhadeshia,et al.  Metallographic observations of bainite transformation mechanism , 1995 .

[41]  H. Bhadeshia,et al.  Strength of mixtures of bainite and martensite , 1994 .

[42]  H. Bhadeshia,et al.  Bainite in Steels , 2019 .

[43]  H. K. D. H. Bhadeshia,et al.  Bainite in silicon steels: New composition–property approach Part 1 , 1983 .

[44]  F. Pickering,et al.  Structure–property relationships in dual-phase steels , 1982 .

[45]  H. Bhadeshia,et al.  Bainite: An atom-probe study of the incomplete reaction phenomenon , 1982 .

[46]  H. Margolin,et al.  Plastic zone sizes and strain partitioning in α-β TiMn alloys , 1982 .

[47]  T. Gladman,et al.  Work hardening of dual-phase steels , 1981 .

[48]  L. Durand,et al.  Tensile deformation of a two-phase copper-silver alloy , 1981 .

[49]  H. Nevalainen,et al.  Structu re-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness , 1981 .

[50]  H. Bhadeshia,et al.  The bainite transformation in a silicon steel , 1979 .