A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition.

[1]  Steffen Schmidt,et al.  Retrotransposition and Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation. , 2015, Molecular cell.

[2]  J. V. Moran,et al.  The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes , 2015, Microbiology spectrum.

[3]  V. Narry Kim,et al.  Emerging Roles of RNA Modification: m6A and U-Tail , 2014, Cell.

[4]  N. Okada,et al.  Mechanism by which a LINE protein recognizes its 3′ tail RNA , 2014, Nucleic acids research.

[5]  J. Steitz,et al.  Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix , 2014, Nature Structural &Molecular Biology.

[6]  Martin S. Taylor,et al.  Affinity Proteomics Reveals Human Host Factors Implicated in Discrete Stages of LINE-1 Retrotransposition , 2013, Cell.

[7]  C. Gabus,et al.  The Specificity and Flexibility of L1 Reverse Transcription Priming at Imperfect T-Tracts , 2013, PLoS genetics.

[8]  J. Steitz,et al.  Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs , 2012, Proceedings of the National Academy of Sciences.

[9]  Phillip A Sharp,et al.  A triple helix stabilizes the 3' ends of long noncoding RNAs that lack poly(A) tails. , 2012, Genes & development.

[10]  K. Ohshima Parallel Relaxation of Stringent RNA Recognition in Plant and Mammalian L1 Retrotransposons , 2012, Molecular biology and evolution.

[11]  D. C. Hancks,et al.  Active human retrotransposons: variation and disease. , 2012, Current opinion in genetics & development.

[12]  R. Löwer,et al.  The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery , 2011, Nucleic acids research.

[13]  J. V. Moran,et al.  LINE-1 elements in structural variation and disease. , 2011, Annual review of genomics and human genetics.

[14]  H. Kazazian,et al.  Retrotransposition of marked SVA elements by human L1s in cultured cells. , 2011, Human molecular genetics.

[15]  Steffen Schmidt,et al.  Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition , 2011, Nature Structural &Molecular Biology.

[16]  J. V. Moran,et al.  Characterization of LINE-1 Ribonucleoprotein Particles , 2010, PLoS genetics.

[17]  J. Jurka,et al.  Origin and evolution of LINE-1 derived "half-L1" retrotransposons (HAL1). , 2010, Gene.

[18]  Evan E. Eichler,et al.  LINE-1 Retrotransposition Activity in Human Genomes , 2010, Cell.

[19]  Ya-Ting Chang,et al.  Fission Yeast Tel1ATM and Rad3ATR Promote Telomere Protection and Telomerase Recruitment , 2009, PLoS genetics.

[20]  Ryan E. Mills,et al.  Active Alu retrotransposons in the human genome. , 2008, Genome research.

[21]  David L. Spector,et al.  3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA , 2008, Cell.

[22]  Ivan N. Shatsky,et al.  Efficient Translation Initiation Directed by the 900-Nucleotide-Long and GC-Rich 5′ Untranslated Region of the Human Retrotransposon LINE-1 mRNA Is Strictly Cap Dependent Rather than Internal Ribosome Entry Site Mediated , 2007, Molecular and Cellular Biology.

[23]  J. V. Moran,et al.  Selective inhibition of Alu retrotransposition by APOBEC3G. , 2007, Gene.

[24]  P. Deininger,et al.  Requirements for polyadenylation at the 3' end of LINE-1 elements. , 2007, Gene.

[25]  J. V. Moran,et al.  Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles , 2006, Nature Structural &Molecular Biology.

[26]  David Tollervey,et al.  RNA-quality control by the exosome , 2006, Nature Reviews Molecular Cell Biology.

[27]  J. V. Moran,et al.  Unconventional translation of mammalian LINE-1 retrotransposons. , 2006, Genes & development.

[28]  J. V. Moran,et al.  Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. , 2005, Human molecular genetics.

[29]  T. Heidmann,et al.  Role of poly(A) tail length in Alu retrotransposition. , 2005, Genomics.

[30]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[31]  H. Lauke,et al.  Cell Type-specific Expression of LINE-1 Open Reading Frames 1 and 2 in Fetal and Adult Human Tissues* , 2004, Journal of Biological Chemistry.

[32]  Mark Gerstein,et al.  Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. , 2003, Genome research.

[33]  Thierry Heidmann,et al.  LINE-mediated retrotransposition of marked Alu sequences , 2003, Nature Genetics.

[34]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Jef D Boeke,et al.  Human L1 element target‐primed reverse transcription in vitro , 2002, The EMBO journal.

[36]  N. Okada,et al.  LINEs Mobilize SINEs in the Eel through a Shared 3′ Sequence , 2002, Cell.

[37]  N. Sonenberg,et al.  Shared protein components of SINE RNPs. , 2002, Journal of molecular biology.

[38]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[39]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[40]  F. Bushman,et al.  Nucleic Acid Chaperone Activity of the ORF1 Protein from the Mouse LINE-1 Retrotransposon , 2001, Molecular and Cellular Biology.

[41]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[42]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[43]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[44]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[45]  J. Boeke,et al.  Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. , 1998, Biochemistry.

[46]  J. Boeke LINEs and Alus — the polyA connection , 1997, Nature Genetics.

[47]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[48]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[49]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[50]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[51]  N. Okada,et al.  The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements , 1996, Molecular and cellular biology.

[52]  H. Hohjoh,et al.  Cytoplasmic ribonucleoprotein complexes containing human LINE‐1 protein and RNA. , 1996, The EMBO journal.

[53]  H. Kazazian,et al.  A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion , 1994, Nature Genetics.

[54]  M F Singer,et al.  Translation of the human LINE-1 element, L1Hs. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. E. Thayer,et al.  Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. , 1993, Human molecular genetics.

[56]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[57]  S. Holmes,et al.  Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. , 1992, The Journal of biological chemistry.

[58]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[59]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[60]  S. Martin,et al.  Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells , 1991, Molecular and cellular biology.

[61]  D. Labuda,et al.  Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. , 1991, The Journal of biological chemistry.

[62]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[63]  R. E. Thayer,et al.  Translation of LINE-1 DNA elements in vitro and in human cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Labuda,et al.  Sequence conservation in Alu evolution. , 1989, Nucleic acids research.

[65]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[66]  A. F. Scott,et al.  Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence☆ , 1987, Genomics.

[67]  G. Grimaldi,et al.  Defining the beginning and end of KpnI family segments. , 1984, The EMBO journal.

[68]  J. V. Moran,et al.  A YY1-binding site is required for accurate human LINE-1 transcription initiation. , 2004, Nucleic acids research.

[69]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.