Local Pattern Detection and Clustering

The starting point of this work is the definition of local pattern detection given in [10] as the unsupervised detection of local regions with anomalously high data density, which represent real underlying phenomena. We discuss some aspects of this definition and examine the differences between clustering and pattern detection (if any), before we investigate how to utilize clustering algorithms for pattern detection. A modification of an existing clustering algorithm is proposed to identify local patterns that are flagged as being significant according to a statistical test.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[3]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[4]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[5]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[6]  Xiaomin Liu,et al.  A Least Biased Fuzzy Clustering Method , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[8]  Niall M. Adams,et al.  Determining Hit Rate in Pattern Search , 2002, Pattern Detection and Discovery.

[9]  S. Mallat A wavelet tour of signal processing , 1998 .

[10]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[11]  David J. Hand,et al.  Significance tests for patterns in continuous data , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[12]  C. A. Murthy,et al.  Density-Based Multiscale Data Condensation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Brian Everitt,et al.  Cluster analysis , 1974 .

[14]  A. Geva Non-stationary time-series prediction using fuzzy clustering , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[15]  Frank Höppner Handling Feature Ambiguity in Knowledge Discovery from Time Series , 2002, Discovery Science.

[16]  David J. Hand,et al.  Pattern Detection and Discovery , 2002, Pattern Detection and Discovery.

[17]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .