Geometric Weil representation: local field case

Abstract Let k be an algebraically closed field of characteristic greater than 2, and let F=k((t)) and G=𝕊p2d. In this paper we propose a geometric analog of the Weil representation of the metaplectic group $\widetilde G(F)$. This is a category of certain perverse sheaves on some stack, on which $\widetilde G(F)$ acts by functors. This construction will be used by Lysenko (in [Geometric theta-lifting for the dual pair S𝕆2m, 𝕊p2n, math.RT/0701170] and subsequent publications) for the proof of the geometric Langlands functoriality for some dual reductive pairs.

[1]  S. Lysenko Geometric theta-lifting for the dual pair $\mathbb {SO}_{2m}, \mathbb {S}\mathrm {p}_{2n}$ , 2011 .

[2]  S. Lysenko Geometric theta-lifting for the dual pair GSp_{2n}, GO_{2m} , 2008, 0802.0457.

[3]  R. Hadani,et al.  Canonical quantization of symplectic vector spaces over finite fields , 2007 .

[4]  Shamgar Gurevich,et al.  Quantization of symplectic vector spaces over finite fields , 2007, 0705.4556.

[5]  S. Lysenko Geometric theta-lifting for the dual pair SO_{2m}, Sp_{2n} , 2007, math/0701170.

[6]  G. Henniart,et al.  The Weil Representation , 2006 .

[7]  R. Hadani,et al.  Heisenberg Realizations, Eigenfunctions and Proof of the Kurlberg-Rudnick Supremum Conjecture , 2005, math-ph/0511036.

[8]  Sergey Lysenko,et al.  Moduli of metaplectic bundles on curves and Theta-sheaves , 2004, math/0405021.

[9]  R. Hadani,et al.  Proof of the Kurlberg-Rudnick rate conjecture , 2004, math-ph/0404074.

[10]  Dipendra Prasad,et al.  A brief survey on the theta correspondence , 1998 .

[11]  S. Kudla NOTES ON THE LOCAL THETA CORRESPONDENCE , 1996 .

[12]  Dipendra Prasad Weil representation, Howe duality, and the theta correspondence , 1993 .

[13]  M. Vignéras,et al.  Correspondances de Howe sur un corps p-adique , 1987 .

[14]  M. Vergne,et al.  The Weil representation, Maslov index, and theta series , 1980 .

[15]  P. Gérardin,et al.  Weil representations associated to finite fields , 1977 .

[16]  R. Howe Series and invariant theory , 1977 .

[17]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .