Prediction of CTL epitopes using QM, SVM and ANN techniques.

[1]  Gajendra P. S. Raghava,et al.  SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence , 2004, Bioinform..

[2]  Hans-Georg Rammensee,et al.  MHC ligands and peptide motifs: first listing , 2004, Immunogenetics.

[3]  Gajendra P. S. Raghava,et al.  ProPred1: Prediction of Promiscuous MHC Class-I Binding Sites , 2003, Bioinform..

[4]  Gajendra P. S. Raghava,et al.  MHCBN: a comprehensive database of MHC binding and non-binding peptides , 2003, Bioinform..

[5]  E. Reinherz,et al.  Prediction of MHC class I binding peptides using profile motifs. , 2002, Human immunology.

[6]  Vladimir Brusic,et al.  Large‐scale computational identification of HIV T‐cell epitopes , 2002, Immunology and cell biology.

[7]  Julie McMurry,et al.  Immuno‐informatics: Mining genomes for vaccine components , 2002, Immunology and cell biology.

[8]  Gajendra P. S. Raghava,et al.  ProPred: prediction of HLA-DR binding sites , 2001, Bioinform..

[9]  D. Flower,et al.  Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. , 2001, Journal of medicinal chemistry.

[10]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[11]  S Brunak,et al.  Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project.". , 2000, Reviews in immunogenetics.

[12]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[13]  G. Hämmerling,et al.  Antigen processing and presentation‐towards the Millennium , 1999, Immunological reviews.

[14]  S Buus,et al.  Description and prediction of peptide-MHC binding: the 'human MHC project'. , 1999, Current opinion in immunology.

[15]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[16]  Nello Cristianini,et al.  Advances in Kernel Methods - Support Vector Learning , 1999 .

[17]  C. Watts,et al.  Pathways of antigen processing and presentation. , 1999, Reviews in immunogenetics.

[18]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[19]  A Sette,et al.  Two complementary methods for predicting peptides binding major histocompatibility complex molecules. , 1997, Journal of molecular biology.

[20]  T. Auton,et al.  Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens. , 1996, Molecular immunology.

[21]  J. Berzofsky,et al.  Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. , 1995, Vaccine.

[22]  J A Koziol,et al.  Prediction of binding to MHC class I molecules. , 1995, Journal of immunological methods.

[23]  Don C. Wiley,et al.  Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide , 1994, Nature.

[24]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[25]  R. Epand The Amphipathic Helix , 1993 .

[26]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[27]  M. Meldal,et al.  T‐Helper‐Cell Determinants in Protein Antigens are Preferentially Located in Cysteine‐Rich Antigen Segments Resistant to Proteolytic Cleavage by Cathepsin B, L, and D , 1991, Scandinavian journal of immunology.

[28]  Eric O Long,et al.  Pathways of viral antigen processing and presentation to CTL: defined by the mode of virus entry? , 1989, Immunology today.

[29]  W. Taylor,et al.  A sequence pattern common to T cell epitopes. , 1988, The EMBO journal.

[30]  V. Reyes,et al.  Hydrophobic strip-of-helix algorithm for selection of T cell-presented peptides. , 1987, Molecular immunology.

[31]  J L Cornette,et al.  Prediction of immunodominant helper T cell antigenic sites from the primary sequence. , 1987, Journal of immunology.

[32]  C DeLisi,et al.  Strong conformational propensities enhance T cell antigenicity. , 1987, Journal of immunology.

[33]  C DeLisi,et al.  T-cell antigenic sites tend to be amphipathic structures. , 1985, Proceedings of the National Academy of Sciences of the United States of America.