Generating Symbolic Interpolants for Scattered Data with Normal Vectors

Algorithms to generate a triangular or a quadrilateral interpolant with G1-continuity are given in this paper for arbitrary scattered data with associated normal vectors over a prescribed triangular or quadrilateral decomposition. The interpolants are constructed with a general method to generate surfaces from moving Bézier curves under geometric constraints. With the algorithm, we may obtain interpolants in complete symbolic parametric forms, leading to a fast computation of the interpolant. A dynamic interpolation solid modelling software package DISM is implemented based on the algorithm which can be used to generate and manipulate solid objects in an interactive way.

[1]  Tony DeRose,et al.  8. A Survey of Parametric Scattered Data Fitting Using Triangular Interpolants , 1992, Curve and Surface Design.

[2]  Charles T. Loop,et al.  Smooth spline surfaces over irregular meshes , 1994, SIGGRAPH.

[3]  Xiao-Shan Gao,et al.  Construct piecewise Hermite interpolation surface with blending methods , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[4]  Chandrajit L. Bajaj,et al.  C1 modeling with A-patches from rational trivariate functions , 2001, Comput. Aided Geom. Des..

[5]  Larry L. Schumaker,et al.  Minimal energy surfaces using parametric splines , 1996, Comput. Aided Geom. Des..

[6]  Chandrajit L. Bajaj,et al.  Spline Approximations of Real Algebraic Surfaces , 1997, J. Symb. Comput..

[7]  Wolfgang Dahmen,et al.  Smooth piecewise quadric surfaces , 1989 .

[8]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[9]  Isaac Amidror,et al.  Scattered data interpolation methods for electronic imaging systems: a survey , 2002, J. Electronic Imaging.

[10]  Helmut Pottmann,et al.  Approximation with active B-spline curves and surfaces , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[11]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[12]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[13]  Tony DeRose,et al.  Parametric surface interpolation , 1992, IEEE Computer Graphics and Applications.

[14]  Baining Guo Quadric and cubic bitetrahedral patches , 2005, The Visual Computer.

[15]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[16]  Gerard O'Regan Texas Instruments , 1964, Nature.

[17]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[18]  Hong Qin,et al.  Surface reconstruction with triangular B-splines , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[19]  P. Alfeld Scattered data interpolation in three or more variables , 1989 .

[20]  Ahmad H. Nasri,et al.  Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..

[21]  Wolfgang Dahmen,et al.  Cubicoids: modeling and visualization , 1993, Comput. Aided Geom. Des..

[22]  Albert Wiltsche C1- and C2-continuous spline-interpolation of a regular triangular net of points , 2003, Comput. Graph..

[23]  Gary J. Herron,et al.  Smooth closed surfaces with discrete triangular interpolants , 1985, Comput. Aided Geom. Des..