Hamiltonian splitting for the Vlasov-Maxwell equations

A new splitting is proposed for solving the Vlasov-Maxwell system. This splitting is based on a decomposition of the Hamiltonian of the Vlasov-Maxwell system and allows for the construction of arbitrary high order methods by composition (independent of the specific deterministic method used for the discretization of the phase space). Moreover, we show that for a spectral method in space this scheme satisfies Poisson's equation without explicitly solving it. Finally, we present some examples in the context of the time evolution of an electromagnetic plasma instability which emphasizes the excellent behavior of the new splitting compared to methods from the literature.

[1]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[2]  Nicolas Crouseilles,et al.  High order Runge-Kutta-Nystrom splitting methods for the Vlasov-Poisson equation , 2011 .

[3]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[4]  Yingda Cheng,et al.  Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..

[5]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[6]  Eric Sonnendrücker,et al.  Charge-conserving grid based methods for the Vlasov–Maxwell equations , 2014 .

[7]  T. D. Arber,et al.  VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..

[8]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[9]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[10]  A. Bruce Langdon,et al.  On enforcing Gauss' law in electromagnetic particle-in-cell codes , 1992 .

[11]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[12]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[13]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[14]  K. Bowers,et al.  Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .

[15]  Akira Hasegawa,et al.  ONE-DIMENSIONAL PLASMA MODEL IN THE PRESENCE OF A MAGNETIC FIELD. , 1968 .

[16]  Régine Barthelmé Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell , 2005 .

[17]  Alexander Ostermann,et al.  A strategy to suppress recurrence in grid-based Vlasov solvers , 2014 .

[18]  Erwan Faou,et al.  Geometric Numerical Integration and Schrodinger Equations , 2012 .

[19]  Francis Filbet,et al.  Numerical approximation of collisional plasmas by high order methods , 2004 .

[20]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[21]  M. R. Feix,et al.  EULERIAN CODES FOR THE VLASOV EQUATION , 1996 .

[22]  Zhiwei Ma,et al.  The plasma wave echo revisited , 2011 .

[23]  C. Cavazzoni,et al.  A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .

[24]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[25]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[26]  A. Klimas,et al.  A splitting algorithm for Vlasov simulation with filamentation filtration , 1994 .

[27]  Nicolas Crouseilles,et al.  A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations , 2011 .

[28]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[29]  F. Pegoraro,et al.  Nonlinear kinetic development of the Weibel instability and the generation of electrostatic coherent structures , 2009, 1008.2336.

[30]  K. Dransfeld,et al.  Excitation of Hypersonic Waves by Ferromagnetic Resonance , 1959 .

[31]  Bengt Eliasson,et al.  Outflow boundary conditions for the Fourier transformed two-dimensional Vlasov equation , 2002 .

[32]  Yingda Cheng,et al.  Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..

[33]  P. Morrison,et al.  The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .

[34]  E. Fijalkow,et al.  A numerical solution to the Vlasov equation , 1999 .

[35]  Lukas Einkemmer,et al.  Convergence Analysis of a Discontinuous Galerkin/Strang Splitting Approximation for the Vlasov-Poisson Equations , 2012, SIAM J. Numer. Anal..

[36]  F. Pegoraro,et al.  Kinetic saturation of the Weibel instability in a collisionless plasma , 1998 .

[37]  Vladimir Tikhonchuk,et al.  High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications , 2008, J. Comput. Phys..

[38]  S. Jorna,et al.  Dependence of target yield on input energy profile , 1980 .

[39]  John D. Villasenor,et al.  Rigorous charge conservation for local electromagnetic field solvers , 1992 .