Hamiltonian splitting for the Vlasov-Maxwell equations
暂无分享,去创建一个
[1] E. S. Weibel,et al. Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .
[2] Nicolas Crouseilles,et al. High order Runge-Kutta-Nystrom splitting methods for the Vlasov-Poisson equation , 2011 .
[3] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[4] Yingda Cheng,et al. Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..
[5] Giovanni Manfredi,et al. Long-Time Behavior of Nonlinear Landau Damping , 1997 .
[6] Eric Sonnendrücker,et al. Charge-conserving grid based methods for the Vlasov–Maxwell equations , 2014 .
[7] T. D. Arber,et al. VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..
[8] Stefano Markidis,et al. The energy conserving particle-in-cell method , 2011, J. Comput. Phys..
[9] Jerrold E. Marsden,et al. The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .
[10] A. Bruce Langdon,et al. On enforcing Gauss' law in electromagnetic particle-in-cell codes , 1992 .
[11] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[12] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[13] P. J. Morrison,et al. A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..
[14] K. Bowers,et al. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .
[15] Akira Hasegawa,et al. ONE-DIMENSIONAL PLASMA MODEL IN THE PRESENCE OF A MAGNETIC FIELD. , 1968 .
[16] Régine Barthelmé. Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell , 2005 .
[17] Alexander Ostermann,et al. A strategy to suppress recurrence in grid-based Vlasov solvers , 2014 .
[18] Erwan Faou,et al. Geometric Numerical Integration and Schrodinger Equations , 2012 .
[19] Francis Filbet,et al. Numerical approximation of collisional plasmas by high order methods , 2004 .
[20] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[21] M. R. Feix,et al. EULERIAN CODES FOR THE VLASOV EQUATION , 1996 .
[22] Zhiwei Ma,et al. The plasma wave echo revisited , 2011 .
[23] C. Cavazzoni,et al. A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .
[24] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[25] Luis Chacón,et al. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..
[26] A. Klimas,et al. A splitting algorithm for Vlasov simulation with filamentation filtration , 1994 .
[27] Nicolas Crouseilles,et al. A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations , 2011 .
[28] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[29] F. Pegoraro,et al. Nonlinear kinetic development of the Weibel instability and the generation of electrostatic coherent structures , 2009, 1008.2336.
[30] K. Dransfeld,et al. Excitation of Hypersonic Waves by Ferromagnetic Resonance , 1959 .
[31] Bengt Eliasson,et al. Outflow boundary conditions for the Fourier transformed two-dimensional Vlasov equation , 2002 .
[32] Yingda Cheng,et al. Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..
[33] P. Morrison,et al. The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .
[34] E. Fijalkow,et al. A numerical solution to the Vlasov equation , 1999 .
[35] Lukas Einkemmer,et al. Convergence Analysis of a Discontinuous Galerkin/Strang Splitting Approximation for the Vlasov-Poisson Equations , 2012, SIAM J. Numer. Anal..
[36] F. Pegoraro,et al. Kinetic saturation of the Weibel instability in a collisionless plasma , 1998 .
[37] Vladimir Tikhonchuk,et al. High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications , 2008, J. Comput. Phys..
[38] S. Jorna,et al. Dependence of target yield on input energy profile , 1980 .
[39] John D. Villasenor,et al. Rigorous charge conservation for local electromagnetic field solvers , 1992 .