Effect of Ti content on the inclusions, microstructure and fracture mechanism of X100 pipeline steel laser-MAG hybrid welds

[1]  X. Shen,et al.  Acicular ferrite nucleation mechanism in laser-MAG hybrid welds of X100 pipeline steel , 2021 .

[2]  Xiao-nan Wang,et al.  Study on the mechanism of heat input on the grain boundary distribution and impact toughness in CGHAZ of X100 pipeline steel from the aspect of variant , 2021 .

[3]  R. Misra,et al.  Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints , 2020 .

[4]  O. Ojo,et al.  Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800MPa grade high-strength low-alloy steel , 2020 .

[5]  M. Rethmeier,et al.  Hybrid laser arc welding of thick high-strength pipeline steels of grade X120 with adapted heat input , 2020 .

[6]  Xiao-nan Wang,et al.  A Comparative Analysis on Microstructure and Fracture Mechanism of X100 Pipeline Steel CGHAZ Between Laser Welding and Arc Welding , 2019, Journal of Materials Engineering and Performance.

[7]  R. Misra,et al.  Thermodynamic basis of twin-related variant pair in high strength low alloy steel , 2019, Scripta Materialia.

[8]  R. Misra,et al.  Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs , 2019, Materials Science and Engineering: A.

[9]  D. Ponge,et al.  Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite , 2018, Acta Materialia.

[10]  A. Kaplan,et al.  Laser-arc hybrid welding of thick HSLA steel , 2018, Journal of Materials Processing Technology.

[11]  A. Kaplan,et al.  Deep penetration fiber laser-arc hybrid welding of thick HSLA steel , 2018, Journal of Materials Processing Technology.

[12]  Xianghua Liu,et al.  Inclusion Characteristics and Acicular Ferrite Nucleation in Ti-Containing Weld Metals of X80 Pipeline Steel , 2018, Metallurgical and Materials Transactions A.

[13]  Xianguang Zhang,et al.  Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy , 2018 .

[14]  Peishan Zhou,et al.  Misorientation, grain boundary, texture and recrystallization study in X90 hot bend related to mechanical properties , 2018 .

[15]  G. Turichin,et al.  Laser-Arc hybrid welding perspective ultra-high strength steels: influence of the chemical composition of weld metal on microstructure and mechanical properties , 2018 .

[16]  M. Rethmeier,et al.  Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel , 2018 .

[17]  Changhee Lee,et al.  Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds , 2016, Metallurgical and Materials Transactions A.

[18]  Xinhua Wang,et al.  Microstructure refinement and mechanical properties improvement by developing IAF on inclusions in Ti–Al complex deoxidized HSLA steel , 2015 .

[19]  Youngmo Kim,et al.  Characterization of Inclusions Formed in Ti-containing Steel Weld Metals , 2015 .

[20]  S. Subramanian,et al.  EBSD characterization of secondary microcracks in the heat affected zone of a X100 pipeline steel weld joint , 2015, International Journal of Fracture.

[21]  T. Yokota,et al.  Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals , 2015 .

[22]  Hui-bin Wu,et al.  Microstructural characterization and impact toughness of a jackup rig rack steel treated by intercritical heat treatment , 2013 .

[23]  E. Østby,et al.  Properties of Laser Hybrid Butt Welds of 420 MPa Steel , 2013 .

[24]  J. Seo,et al.  Effect of Ti addition on weld microstructure and inclusion characteristics of bainitic GMA welds , 2013 .

[25]  L. Holappa,et al.  Addition of Titanium Oxide Inclusions into Liquid Steel to Control Nonmetallic Inclusions , 2012, Metallurgical and Materials Transactions B.

[26]  G. Miyamoto,et al.  Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite , 2010 .

[27]  F. Vollertsen,et al.  Solutions for joining pipe steels using laser-GMA-hybrid welding processes , 2010 .

[28]  Y. Komizo,et al.  Relation between Inclusion Surface and Acicular Ferrite in Low Carbon Low Alloy Steel Weld , 2009 .

[29]  L. Brewer,et al.  Misorientation Mapping for Visualization of Plastic Deformation via Electron Back-Scattered Diffraction , 2005, Microscopy and Microanalysis.

[30]  Ke Yang,et al.  In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel , 2006 .

[31]  Dong Nyung Lee,et al.  Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel , 2003 .

[32]  Dong Nyung Lee,et al.  Mn absorption characteristics of Ti2O3 inclusions in low carbon steels , 2001 .

[33]  J. Shim,et al.  Non-Metallic Inclusions and Acicular Ferrite in Low Carbon Steel , 2000 .

[34]  G. L’espérance,et al.  Characterisation of inclusions found in C–Mn steel welds containing titanium , 1999 .

[35]  J. Knott,et al.  The relationship between fracture toughness and microstructure in the cleavage fracture of mild steel , 1976 .

[36]  W. F. Brace,et al.  An extension of the Griffith theory of fracture to rocks , 1960 .