SIR Dynamics with Vaccination in a Large Configuration Model
暂无分享,去创建一个
[1] Joel C. Miller. A note on a paper by Erik Volz: SIR dynamics in random networks , 2009, Journal of mathematical biology.
[2] I. I. Gikhman,et al. The Theory of Stochastic Processes III , 1979 .
[3] E. Volz. SIR dynamics in random networks with heterogeneous connectivity , 2007, Journal of mathematical biology.
[4] Acquaintance Vaccination in an Epidemic on a Random Graph with Specified Degree Distribution , 2013, Journal of Applied Probability.
[5] Martin L. Puterman,et al. Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .
[6] Nicolas Fournier,et al. A microscopic probabilistic description of a locally regulated population and macroscopic approximations , 2004, math/0503546.
[7] Helena A Herrmann,et al. Using network science to propose strategies for effectively dealing with pandemics: The COVID-19 example , 2020, medRxiv.
[8] Bruno Gaujal,et al. A MEAN FIELD GAME ANALYSIS OF SIR DYNAMICS WITH VACCINATION , 2020, Probability in the Engineering and Informational Sciences.
[9] B. Gaujal,et al. Discrete mean field games: Existence of equilibria and convergence , 2019, Journal of Dynamics & Games.
[10] David R. Cox,et al. The Theory of Stochastic Processes , 1967, The Mathematical Gazette.
[11] Jingzhou Liu,et al. The Impact of Imitation on Vaccination Behavior in Social Contact Networks , 2012, PLoS Comput. Biol..
[12] Gesine Reinert,et al. Approximating the epidemic curve , 2013, 1301.3288.
[13] Yong Han Kang,et al. Stability analysis and optimal vaccination of an SIR epidemic model , 2008, Biosyst..
[14] Mark E. J. Newman,et al. The Structure and Function of Complex Networks , 2003, SIAM Rev..
[15] Aric Hagberg,et al. Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.
[16] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[17] Xuebin Chi,et al. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission , 2002 .
[18] H E Stanley,et al. Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[19] R. May,et al. How Viruses Spread Among Computers and People , 2001, Science.
[20] Piet Van Mieghem,et al. Epidemic processes in complex networks , 2014, ArXiv.
[21] L. Amaral,et al. The web of human sexual contacts , 2001, Nature.
[22] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[23] Stephen P. Borgatti,et al. Centrality and network flow , 2005, Soc. Networks.
[24] Alessandro Vespignani,et al. Epidemic spreading in scale-free networks. , 2000, Physical review letters.
[25] Daniel I. S. Rosenbloom,et al. Imitation dynamics of vaccination behaviour on social networks , 2011, Proceedings of the Royal Society B: Biological Sciences.
[26] S. Roelly-Coppoletta. A criterion of convergence of measure-valued processes: Application to measure branching processes , 1986 .
[27] R. May,et al. Infection dynamics on scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] Herbert W. Hethcote,et al. Optimal vaccination schedules in a deterministic epidemic model , 1973 .
[29] Svante Janson. The Probability That a Random Multigraph is Simple , 2009, Comb. Probab. Comput..
[30] Weimin Han,et al. Convergence of the forward-backward sweep method in optimal control , 2012, Comput. Optim. Appl..
[31] Joel C. Miller,et al. Mathematics of Epidemics on Networks: From Exact to Approximate Models , 2017 .
[32] Gabriel Turinici,et al. Global optimal vaccination in the SIR model: properties of the value function and application to cost-effectiveness analysis. , 2015, Mathematical biosciences.
[33] Viet Chi Tran. Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques , 2006 .
[34] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[35] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[36] M. Newman. Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[37] Svante Janson,et al. Law of large numbers for the SIR epidemic on a random graph with given degrees , 2013, Random Struct. Algorithms.
[38] S. Janson,et al. Graphs with specified degree distributions, simple epidemics, and local vaccination strategies , 2007, Advances in Applied Probability.
[39] Rodrigo Castro,et al. EB-DEVS: A Formal Framework for Modeling and Simulation of Emergent Behavior in Dynamic Complex Systems , 2021, J. Comput. Sci..
[40] L. Decreusefond,et al. Large graph limit for an SIR process in random network with heterogeneous connectivity , 2010, 1007.3958.
[41] Timothy C. Reluga,et al. Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum , 2007, Proceedings of the National Academy of Sciences.
[42] Frank Ball,et al. Acquaintance Vaccination in an Epidemic on a Random Graph with Specified Degree Distribution , 2013, J. Appl. Probab..
[43] P. Holland,et al. Transitivity in Structural Models of Small Groups , 1971 .
[44] Joel C. Miller,et al. A primer on the use of probability generating functions in infectious disease modeling , 2018, Infectious Disease Modelling.
[45] Y. Moreno,et al. Epidemic outbreaks in complex heterogeneous networks , 2001, cond-mat/0107267.
[46] F. Brauer,et al. Mathematical Models in Population Biology and Epidemiology , 2001 .
[47] Sylvie Roelly‐ Coppoletta. A criterion of convergence of measure‐valued processes: application to measure branching processes , 1986 .
[48] Lauren Ancel Meyers,et al. Erratic Flu Vaccination Emerges from Short-Sighted Behavior in Contact Networks , 2011, PLoS Comput. Biol..
[49] Emmanuel Trélat,et al. Contrôle optimal : théorie & applications , 2005 .
[50] P. Lions,et al. Ordinary differential equations, transport theory and Sobolev spaces , 1989 .
[51] Jukka-Pekka Onnela,et al. Efficient vaccination strategies for epidemic control using network information , 2018, Epidemics.
[52] R. Durrett. Random Graph Dynamics: References , 2006 .
[53] Luiz Henrique Alves Monteiro,et al. An epidemic model to evaluate the homogeneous mixing assumption , 2014, Commun. Nonlinear Sci. Numer. Simul..
[54] P. Bermolen,et al. The jamming constant of uniform random graphs , 2013, 1310.8475.
[55] Nuno Crokidakis,et al. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement , 2016, 1605.03914.
[56] Jeong Han Kim,et al. Poisson Cloning Model for Random Graphs , 2008, 0805.4133.
[57] R. May,et al. Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.
[58] Alberto Bressan,et al. Viscosity Solutions of Hamilton-Jacobi Equations and Optimal Control Problems , 2011 .
[59] Reuven Cohen,et al. Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.
[60] F. Takeuchi,et al. Effectiveness of realistic vaccination strategies for contact networks of various degree distributions. , 2006, Journal of theoretical biology.