Tunable Metamaterials for Controlling THz Radiation

Remarkable progress in terahertz (THz) sources and detectors is followed by the necessity of manipulating of terahertz radiation. Since natural materials can not perform efficient interaction with THz radiation, artificial structures called metamaterials are designed to overcome “THz gap” in this area. A variety of tunable metamaterials using different methods of control are presented and discussed in this review paper.

[1]  P. Maagt Terahertz Technology for Space and EARTH Applications , 2007 .

[2]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[3]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[4]  P. Kužel,et al.  Dielectric tunability of SrTiO3 thin films in the terahertz range , 2006 .

[5]  H. D. Wu,et al.  Electrically and magnetically tunable microwave device using (Ba, Sr) TiO3/Y3Fe5O12 multilayer , 2000 .

[6]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[7]  Fumiaki Miyamaru,et al.  Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region , 2009 .

[8]  G. Srinivasan,et al.  Planar ferrite-piezoelectric composite microwave resonator with electric and magnetic frequency tuning , 2008 .

[9]  R. Averitt,et al.  Flexible terahertz metamaterials: towards a terahertz metamaterial invisible cloak , 2008, 2008 IEEE International Electron Devices Meeting.

[10]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[11]  John B. Pendry,et al.  Photonic band-gap effects and magnetic activity in dielectric composites , 2002 .

[12]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[13]  D H Werner,et al.  Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. , 2006, Optics letters.

[14]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[15]  Byung-Gyu Chae,et al.  Abrupt metal–insulator transition observed in VO2 thin films induced by a switching voltage pulse , 2005 .

[16]  T. Cui,et al.  Tunable figure of merit for a negative-index metamaterial with a sandwich configuration. , 2009, Optics letters.

[17]  G. Srinivasan,et al.  Q factor of dual-tunable microwave resonators based on yttrium iron garnet and barium strontium titanate layered structures , 2008 .

[18]  Christian Damm,et al.  Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films , 2009 .

[19]  G. Srinivasan,et al.  Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers , 2008 .

[20]  A. Borja,et al.  Low profile small antenna using ferroelectrics cube based artificial magnetic conductor , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[21]  G. Srinivasan,et al.  Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator , 2006 .

[22]  J. Carru,et al.  Microstrip Transmission Line Loaded by Split-Ring Resonators Tuned by Ferroelectric Thin Film , 2010 .

[23]  H. Glass Ferrite films for microwave and millimeter-wave devices , 1988, Proc. IEEE.

[24]  Houtong Chen,et al.  Flexible Quasi-Three-Dimensional Terahertz Electric Metamaterials , 2009 .

[25]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[26]  G. Hu,et al.  Experimental study for metamaterials based on dielectric resonators and wire frame , 2008 .

[27]  A. Krotkus,et al.  Terahertz emission from tubular pB(Zr,Ti)O3 nanostructures. , 2008, Nano letters.

[28]  Y. Meng,et al.  Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium , 2008 .

[29]  D. Tsai,et al.  Metamaterials: optical activity without chirality. , 2009, Physical review letters.

[30]  T. Itoh,et al.  Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium , 2006 .

[31]  W. Wen,et al.  Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials. , 2005, Optics express.

[32]  Nevill Francis Mott,et al.  Metal-insulator transition in vanadium dioxide , 1975 .

[33]  Willie J Padilla,et al.  Dynamical Control of Terahertz Metamaterial Resonance Response Using Bimaterial Cantilevers , 2008 .

[34]  I. Vendik,et al.  3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions , 2009 .

[35]  P. Mounaix,et al.  Electrical Characterizations of Paraelectric BST Thin Films up to 1 THz: Realization of Microwave Phaseshifters , 2007 .

[36]  Steven A. Cummer,et al.  Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings , 2008 .

[37]  Eleftherios N. Economou,et al.  Broadband blueshift tunable metamaterials and dual-band switches , 2009 .

[38]  Willie J. Padilla,et al.  Electromagnetic Metamaterials for Terahertz Applications , 2008 .

[39]  Gordon R. Harrison,et al.  Hexagonal Ferrites For Millimeter Wave Applications , 1982, Other Conferences.

[40]  H. Bernien,et al.  Active terahertz nanoantennas based on VO2 phase transition. , 2010, Nano letters.

[41]  D P Tsai,et al.  Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. , 2009, Optics express.

[42]  Masayoshi Tonouchi,et al.  Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy , 2005 .

[43]  G. Lo,et al.  A MEMS tunable metamaterial filter , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[44]  M. Popov,et al.  Sub-Terahertz Magnetic and Dielectric Excitations in Hexagonal Ferrites , 2011, IEEE Transactions on Magnetics.

[45]  Nikolay I. Zheludev,et al.  Chalcogenide glasses in active plasmonics , 2010 .

[46]  Microwave magnetoelectric effects in bilayers of piezoelectrics and ferrites with cubic magnetocrystalline anisotropy , 2010 .

[47]  Gopalan Srinivasan,et al.  Electrically tunable ferrite-ferroelectric microwave delay lines , 2005 .

[48]  Willie J. Padilla,et al.  MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies , 2011 .

[49]  G. Srinivasan,et al.  Microwave resonators based on single-crystal yttrium iron garnet and lead magnesium niobate-lead titanate layered structures , 2008 .

[50]  Nian X. Sun,et al.  Ba-Hexaferrite Films for Next Generation Microwave Devices , 2006 .

[51]  Ji Zhou,et al.  Mie resonance-based dielectric metamaterials , 2009 .

[52]  O.G. Vendik,et al.  Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix , 2004, 34th European Microwave Conference, 2004..

[53]  Yuri S. Kivshar,et al.  Tunable fishnet metamaterials infiltrated by liquid crystals , 2010, 1004.0802.

[54]  Iam-Choon Khoo,et al.  Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena , 1994 .

[55]  Sergiy Lysenko,et al.  Light-induced ultrafast phase transitions in VO2 thin film , 2006 .

[56]  Peng Wang,et al.  Fabrication of negative index materials using dielectric and metallic composite route , 2008 .

[57]  Seokho Yun,et al.  Tunable Frequency Selective Surfaces and Negative-Zero-Positive Index Metamaterials Based on Liquid Crystals , 2008, IEEE Transactions on Antennas and Propagation.

[58]  Bong Jun Kim,et al.  Active terahertz metamaterials: Nano-slot antennas on VO2 thin films , 2011 .

[59]  R. Jakoby,et al.  Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line , 2005, IEEE Transactions on Microwave Theory and Techniques.

[60]  J. Pendry Metamaterials and the Control of Electromagnetic Fields , 2007 .

[61]  J. Ganne,et al.  Experimental measurement of negative index in an all-dielectric metamaterial , 2009 .

[62]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[63]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[64]  P. Kužel,et al.  Modulators of THz radiation based on SrTiO3 epitaxial thin films , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[65]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[66]  Patrick Mounaix,et al.  Tunable terahertz metamaterials with negative permeability , 2009 .

[67]  Rodica Ramer,et al.  Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory , 2006 .

[68]  Iam-Choon Khoo,et al.  Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. , 2007, Optics express.

[69]  J. Stewart Aitchison,et al.  Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies , 2005 .

[70]  Michelle L. Povinelli,et al.  Negative effective permeability in polaritonic photonic crystals , 2004 .

[71]  P. Kužel,et al.  Tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[72]  Q. Xing,et al.  Broadband resonant terahertz transmission in a composite metal-dielectric structure. , 2009, Optics express.

[73]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[74]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[75]  G. Srinivasan,et al.  Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices , 2009 .

[76]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[77]  Dmitry S. Kozlov,et al.  3D Metamaterial Based on a Regular Array of Resonant Dielectric Inclusions , 2009 .

[78]  Didier Lippens,et al.  An all-dielectric route for terahertz cloaking. , 2008, Optics express.

[79]  Akhlesh Lakhtakia,et al.  Semiconductor split-ring resonators for thermally tunable terahertz metamaterials , 2008 .

[80]  Nikolay I. Zheludev All change, please , 2007 .

[81]  R. Jakoby,et al.  Cavity perturbation method for characterization of liquid crystals up to 35 GHz , 2004, 34th European Microwave Conference, 2004..

[82]  J. Adam,et al.  Thin-film ferrites for microwave and millimeter-wave applications , 1990 .

[83]  Vassilios Yannopapas,et al.  Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.