Finite time control for MIMO nonlinear system based on higher-order sliding mode.

Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm.

[1]  Jeang-Lin Chang,et al.  Robust dynamic output feedback second-order sliding mode controller for uncertain systems , 2013 .

[2]  Arie Levant Gain-scheduled high-order MIMO sliding mode control , 2010, 49th IEEE Conference on Decision and Control (CDC).

[3]  Franck Plestan,et al.  An adaptive solution for robust control based on integral high‐order sliding mode concept , 2015 .

[4]  C. Mahanta,et al.  Adaptive integral higher order sliding mode controller for uncertain systems , 2013 .

[5]  Franck Plestan,et al.  Higher order sliding mode control based on integral sliding mode , 2007, Autom..

[6]  Qun Zong,et al.  Brief paper: Higher order sliding mode control with self-tuning law based on integral sliding mode , 2010 .

[7]  Christopher Edwards,et al.  A multivariable super-twisting sliding mode approach , 2014, Autom..

[8]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[9]  Christopher Edwards,et al.  Continuous adaptive finite reaching time control and second-order sliding modes , 2013, IMA J. Math. Control. Inf..

[10]  Chian-Song Chiu,et al.  Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems , 2012, Autom..

[11]  Arie Levant,et al.  Principles of 2-sliding mode design , 2007, Autom..

[12]  Hebertt Sira-Ramírez,et al.  Dynamic second-order sliding mode control of the hovercraft vessel , 2002, IEEE Trans. Control. Syst. Technol..

[13]  C. Evangelista,et al.  Multivariable 2-sliding mode control for a wind energy system based on a double fed induction generator , 2012 .

[14]  Rahmat-Allah Hooshmand,et al.  A coordinated MIMO control design for a power plant using improved sliding mode controller. , 2014, ISA transactions.

[15]  Michael Defoort,et al.  A novel higher order sliding mode control scheme , 2009, Syst. Control. Lett..

[16]  Leonid M. Fridman,et al.  Output-feedback finite-time stabilization of disturbed feedback linearizable nonlinear systems , 2013, Autom..

[17]  Giorgio Bartolini,et al.  A survey of applications of second-order sliding mode control to mechanical systems , 2003 .

[18]  A. Levant,et al.  ADJUSTMENT OF HIGH-ORDER SLIDING-MODE CONTROLLERS , 2005 .

[19]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[20]  K. Deimling Multivalued Differential Equations , 1992 .

[21]  Jaime A. Moreno,et al.  Strict Lyapunov Functions for the Super-Twisting Algorithm , 2012, IEEE Transactions on Automatic Control.

[22]  Elsayed A. Sallam,et al.  Quasi sliding mode‐based single input fuzzy self‐tuning decoupled fuzzy PI control for robot manipulators with uncertainty , 2012 .

[23]  T. Ahmed-Ali,et al.  Second-Order Sliding Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine , 2012, IEEE Transactions on Energy Conversion.

[24]  Arie Levant,et al.  Integral High-Order Sliding Modes , 2007, IEEE Transactions on Automatic Control.

[25]  Chitralekha Mahanta,et al.  A fast converging robust controller using adaptive second order sliding mode. , 2012, ISA transactions.

[26]  Giorgio Bartolini,et al.  On the Finite-Time Stabilization of Uncertain Nonlinear Systems With Relative Degree Three , 2007, IEEE Transactions on Automatic Control.

[27]  Alessandro Pisano,et al.  On the multi‐input second‐order sliding mode control of nonlinear uncertain systems , 2012 .

[28]  Ji-Zhen Liu,et al.  Adaptive fuzzy sliding mode control for flexible satellite , 2005, Eng. Appl. Artif. Intell..

[29]  Wei Lin,et al.  Global finite-time stabilization of a class of uncertain nonlinear systems , 2005, Autom..

[30]  Chitralekha Mahanta,et al.  Chattering free adaptive multivariable sliding mode controller for systems with matched and mismatched uncertainty. , 2013, ISA transactions.

[31]  Ricardo O. Carelli,et al.  Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties , 2013, Eng. Appl. Artif. Intell..

[32]  Sarah K. Spurgeon,et al.  Output feedback stabilization of MIMO non-linear systems via dynamic sliding mode , 1999 .

[33]  A. Levant MIMO 2-sliding control design , 2003, 2003 European Control Conference (ECC).

[34]  Toshio Yoshimura Adaptive fuzzy sliding mode control for uncertain multi-input multi-output discrete-time systems using a set of noisy measurements , 2015, Int. J. Syst. Sci..