BINARY BLACK HOLE ACCRETION FROM A CIRCUMBINARY DISK: GAS DYNAMICS INSIDE THE CENTRAL CAVITY

We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier–Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 ⩽ q ⩽ 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent “mini disks” surrounding each black hole. We find that for q ≳ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

[1]  A. Sesana,et al.  Migration of massive black hole binaries in self-gravitating accretion discs: Retrograde versus prograde , 2013, 1307.6283.

[2]  Daniel J. Price,et al.  Tearing up the disc: misaligned accretion on to a binary , 2013, 1307.0010.

[3]  Takamitsu L. Tanaka Recurring flares from supermassive black hole binaries: implications for tidal disruption candidates and OJ 287 , 2013, 1303.6279.

[4]  P. Duffell,et al.  GAP OPENING BY EXTREMELY LOW-MASS PLANETS IN A VISCOUS DISK , 2013, 1302.1934.

[5]  S. Mineshige,et al.  Binary Black Hole Accretion Flows From a Misaligned Circumbinary Disk , 2012, 1211.5137.

[6]  R. Narayan,et al.  The Shakura-Sunyaev viscosity prescription with variable α (r) , 2012, 1211.0526.

[7]  A. MacFadyen,et al.  Accretion into the central cavity of a circumbinary disc , 2012, 1210.0536.

[8]  K. Gultekin,et al.  OBSERVABLE CONSEQUENCES OF MERGER-DRIVEN GAPS AND HOLES IN BLACK HOLE ACCRETION DISKS , 2012, 1207.0296.

[9]  Z. Haiman,et al.  Gas pile‐up, gap overflow and Type 1.5 migration in circumbinary discs: application to supermassive black hole binaries , 2012, 1205.5268.

[10]  Z. Haiman,et al.  Gas pile‐up, gap overflow and Type 1.5 migration in circumbinary discs: general theory , 2012, 1205.4714.

[11]  Y. Zlochower,et al.  CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES , 2012, 1204.1073.

[12]  B. Giacomazzo,et al.  GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES , 2012, 1203.6108.

[13]  F. Meru,et al.  Treating gravity in thin-disk simulations , 2012, 1203.1413.

[14]  P. Amaro-Seoane,et al.  Evolution of binary black holes in self gravitating discs. Dissecting the torques , 2012, 1202.6063.

[15]  P. Duffell,et al.  GLOBAL CALCULATIONS OF DENSITY WAVES AND GAP FORMATION IN PROTOPLANETARY DISKS USING A MOVING MESH , 2012, 1202.5608.

[16]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[17]  J. Krolik,et al.  THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CIRCUMBINARY ACCRETION DISKS: DISK STRUCTURES AND ANGULAR MOMENTUM TRANSPORT , 2011, 1110.4866.

[18]  D. Shoemaker,et al.  MERGERS OF SUPERMASSIVE BLACK HOLES IN ASTROPHYSICAL ENVIRONMENTS , 2011, 1101.4684.

[19]  A. Lommen Pulsar Timing Arrays: No longer a Blunt Instrument for Gravitational Wave Detection , 2011, 1112.2158.

[20]  A. Sesana,et al.  Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries , 2011, 1107.2927.

[21]  K. Menou,et al.  Electromagnetic counterparts of supermassive black hole binaries resolved by pulsar timing arrays , 2011, 1107.2937.

[22]  M. Colpi,et al.  Limiting eccentricity of subparsec massive black hole binaries surrounded by self-gravitating gas discs , 2011, 1104.3868.

[23]  Paul C. Duffell,et al.  TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH , 2011, 1104.3562.

[24]  H. C. Stempels,et al.  Modelling circumbinary gas flows in close T Tauri binaries , 2011, 1101.3334.

[25]  A. Sesana,et al.  Gas‐driven massive black hole binaries: signatures in the nHz gravitational wave background , 2010, 1002.0584.

[26]  J. Krolik,et al.  DEPENDENCE OF INNER ACCRETION DISK STRESS ON PARAMETERS: THE SCHWARZSCHILD CASE , 2010, 1001.4809.

[27]  E. Quataert,et al.  Fossil gas and the electromagnetic precursor of supermassive binary black hole mergers , 2009, 0906.0825.

[28]  P. Armitage,et al.  Massive black hole binary mergers within subparsec scale gas discs , 2008, 0809.0311.

[29]  AN ECCENTRIC CIRCUMBINARY ACCRETION DISK AND THE DETECTION OF BINARY MASSIVE BLACK HOLES , 2006, astro-ph/0607467.

[30]  Shin Mineshige,et al.  A Supermassive Binary Black Hole with Triple Disks , 2007, 0708.2555.

[31]  Binary Black Hole Accretion Flows in Merged Galactic Nuclei , 2006, astro-ph/0609144.

[32]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.

[33]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[34]  G. Kauffmann,et al.  Multiple supermassive black holes in galactic bulges , 2002, astro-ph/0208215.

[35]  The co-orbital corotation torque in a viscous disk: Numerical simulations , 2002, astro-ph/0205211.

[36]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[37]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[38]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.

[39]  G. Zamorani,et al.  Most Supermassive Black Holes Must Be Rapidly Rotating , 2001, astro-ph/0112413.

[40]  J. Krolik Magnetized Accretion inside the Marginally Stable Orbit around a Black Hole , 1999, astro-ph/9902267.

[41]  J. Papaloizou,et al.  THE EVOLUTION OF A SUPERMASSIVE BINARY CAUSED BY AN ACCRETION DISC , 1998, astro-ph/9812198.

[42]  I. Bonnell,et al.  ACCRETION DURING BINARY STAR FORMATION. II : GASEOUS ACCRETION AND DISC FORMATION , 1997 .

[43]  S. Lubow,et al.  Mass Flow through Gaps in Circumbinary Disks , 1996 .

[44]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[45]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[46]  L. Hernquist,et al.  Dynamics of Interacting Galaxies , 1992 .

[47]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[48]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[49]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.