Hyperbolic Planforms in Relation to Visual Edges and Textures Perception

We propose to use bifurcation theory and pattern formation as theoretical probes for various hypotheses about the neural organization of the brain. This allows us to make predictions about the kinds of patterns that should be observed in the activity of real brains through, e.g., optical imaging, and opens the door to the design of experiments to test these hypotheses. We study the specific problem of visual edges and textures perception and suggest that these features may be represented at the population level in the visual cortex as a specific second-order tensor, the structure tensor, perhaps within a hypercolumn. We then extend the classical ring model to this case and show that its natural framework is the non-Euclidean hyperbolic geometry. This brings in the beautiful structure of its group of isometries and certain of its subgroups which have a direct interpretation in terms of the organization of the neural populations that are assumed to encode the structure tensor. By studying the bifurcations of the solutions of the structure tensor equations, the analog of the classical Wilson and Cowan equations, under the assumption of invariance with respect to the action of these subgroups, we predict the appearance of characteristic patterns. These patterns can be described by what we call hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of the planforms that were used in previous work to account for some visual hallucinations. If these patterns could be observed through brain imaging techniques they would reveal the built-in or acquired invariance of the neural organization to the action of the corresponding subgroups.

[1]  H. Poincaré Théorie des groupes fuchsiens , 1882 .

[2]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[3]  R. Tennant Algebra , 1941, Nature.

[4]  K. Hirsch,et al.  Representation theory and automorphic functions , 1969 .

[5]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[6]  Hans Maass Siegel's Modular Forms and Dirichlet Series , 1971 .

[7]  G. Rosenberger Fuchssche Gruppen, die freies Produkt zweier zyklischer Gruppen sind, und die Gleichungx2+y2+z2=xyz , 1972 .

[8]  G. Iooss,et al.  Elementary stability and bifurcation theory , 1980 .

[9]  Olivier D. Faugeras,et al.  Improving Consistency and Reducing Ambiguity in Stochastic Labeling: An Optimization Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[11]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  S. Helgason Groups and geometric analysis , 1984 .

[13]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  F. R. Gantmakher The Theory of Matrices , 1984 .

[15]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[16]  Editors , 1986, Brain Research Bulletin.

[17]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[18]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[19]  N. Balazs,et al.  Chaos on the pseudosphere , 1986 .

[20]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[21]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[24]  H. Knutsson Representing Local Structure Using Tensors , 1989 .

[25]  J. Allman,et al.  Cytochrome oxidase and functional coding in primate striate cortex: a hypothesis. , 1990, Cold Spring Harbor symposia on quantitative biology.

[26]  Jane Gilman,et al.  An algorithm for $2$-generator Fuchsian groups. , 1991 .

[27]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[28]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[30]  Jane Gilman Two-generator discrete subgroups of PSL(2, R) , 1995 .

[31]  K. Purpura,et al.  Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs , 1995, Vision Research.

[32]  Jane Gilman Two-generator discrete subgroups of (2,) , 1995 .

[33]  A. Grinvald,et al.  Optical Imaging of the Layout of Functional Domains in Area 17 and Across the Area 17/18 Border in Cat Visual Cortex , 1995, The European journal of neuroscience.

[34]  M. Field Lectures on bifurcations, dynamics and symmetry , 1996 .

[35]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[36]  G. Iooss,et al.  Topics in bifurcation theory and applications , 1999 .

[37]  P. Chossat,et al.  Methods in Equivariant Bifurcations and Dynamical Systems , 2000 .

[38]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[39]  Yicheng Jiang POLYNOMIAL COMPLEXITY OF THE GILMAN{MASKIT DISCRETENESS ALGORITHM , 2001 .

[40]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  Refractor Vision , 2000, The Lancet.

[42]  Lawrence C. Sincich,et al.  Divided by Cytochrome Oxidase: A Map of the Projections from V1 to V2 in Macaques , 2002, Science.

[43]  J. Cowan,et al.  The visual cortex as a crystal , 2002 .

[44]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[45]  H. Iwaniec Spectral methods of automorphic forms , 2002 .

[46]  J. Cowan,et al.  SO3 symmetry breaking mechanism for orientation and spatial frequency tuning in the visual cortex. , 2002, Physical review letters.

[47]  Martin Golubitsky,et al.  What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.

[48]  Ohad Ben-Shahar,et al.  The Perceptual Organization of Texture Flow: A Contextual Inference Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  J. Cowan,et al.  Correction for Bressloff and Cowan, A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn , 2003 .

[50]  Ohad Ben-Shahar,et al.  Cortical connections and early visual function: intra- and inter-columnar processing , 2003, Journal of Physiology-Paris.

[51]  J. Cowan,et al.  A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  J. Cowan,et al.  The functional geometry of local and horizontal connections in a model of V1 , 2003, Journal of Physiology-Paris.

[53]  J. Petitot The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.

[54]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[55]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[56]  Ohad Ben-Shahar,et al.  Geometrical Computations Explain Projection Patterns of Long-Range Horizontal Connections in Visual Cortex , 2004, Neural Computation.

[57]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.

[58]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[59]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[60]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[61]  N. Newman The Visual Neurosciences , 2005 .

[62]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[63]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[64]  Agnès Bachelot-Motet Wave Computation on the Hyperbolic Double Doughnut , 2009, 0902.1249.

[65]  Carl-Fredrik Westin,et al.  Representing Local Structure Using Tensors II , 2011, SCIA.

[66]  H. Sompolinsky,et al.  13 Modeling Feature Selectivity in Local Cortical Circuits , 2022 .