Stream graphs and link streams for the modeling of interactions over time

Graph theory provides a language for studying the structure of relations, and it is often used to study interactions over time too. However, it poorly captures the intrinsically temporal and structural nature of interactions, which calls for a dedicated formalism. In this paper, we generalize graph concepts to cope with both aspects in a consistent way. We start with elementary concepts like density, clusters, or paths, and derive from them more advanced concepts like cliques, degrees, clustering coefficients, or connected components. We obtain a language to directly deal with interactions over time, similar to the language provided by graphs to deal with relations. This formalism is self-consistent: usual relations between different concepts are preserved. It is also consistent with graph theory: graph concepts are special cases of the ones we introduce. This makes it easy to generalize higher level objects such as quotient graphs, line graphs, k-cores, and centralities. This paper also considers discrete versus continuous time assumptions, instantaneous links, and extensions to more complex cases.

[1]  Tiphaine Viard,et al.  Movie rating prediction using content-based and link stream features , 2018, ArXiv.

[2]  V Latora,et al.  Small-world behavior in time-varying graphs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Pietro Manzoni,et al.  New approaches for characterizing inter-contact times in opportunistic networks , 2016, Ad Hoc Networks.

[4]  Ben Y. Zhao,et al.  Link and Triadic Closure Delay: Temporal Metrics for Social Network Dynamics , 2014, ICWSM.

[5]  Naoki Masuda,et al.  Random walk centrality for temporal networks , 2014, ArXiv.

[6]  Tom A. B. Snijders,et al.  Introduction to stochastic actor-based models for network dynamics , 2010, Soc. Networks.

[7]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[8]  Qinna Wang,et al.  Analysis of the Temporal and Structural Features of Threads in a Mailing-List , 2015, CompleNet.

[9]  Vassilis Kostakos Temporal Graphs , 2014, Encyclopedia of Social Network Analysis and Mining.

[10]  Cecilia Mascolo,et al.  Analysing information flows and key mediators through temporal centrality metrics , 2010, SNS '10.

[11]  Céline Robardet,et al.  Duality between Temporal Networks and Signals: Extraction of the Temporal Network Structures , 2015, ArXiv.

[12]  Naoki Masuda,et al.  A Guide to Temporal Networks , 2016, Series on Complexity Science.

[13]  Matthieu Latapy,et al.  Computing maximal cliques in link streams , 2015, Theor. Comput. Sci..

[14]  Matthieu Latapy,et al.  Identifying roles in an IP network with temporal and structural density , 2014, 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[15]  Clémence Magnien,et al.  Discovering Patterns of Interest in IP Traffic Using Cliques in Bipartite Link Streams , 2017, ArXiv.

[16]  Arif Khan,et al.  A set of measures to quantify the dynamicity of longitudinal social networks , 2016, Complex..

[17]  Kun Zhao,et al.  Models, Entropy and Information of Temporal Social Networks , 2013, ArXiv.

[18]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[19]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[20]  Cecilia Mascolo,et al.  Components in time-varying graphs , 2011, Chaos.

[21]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[22]  Xu Tiefeng,et al.  On the enhancement of superconductivity due to Van Hove singularity , 1992 .

[23]  Afonso Ferreira,et al.  Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs , 2012, Journal of Internet Services and Applications.

[24]  Matthieu Latapy,et al.  Finding remarkably dense sequences of contacts in link streams , 2016, Social Network Analysis and Mining.

[25]  Othon Michail,et al.  An Introduction to Temporal Graphs: An Algorithmic Perspective* , 2015, Internet Math..

[26]  Matthieu Latapy,et al.  Impact of Temporal Features of Cattle Exchanges on the Size and Speed of Epidemic Outbreaks , 2017, ICCSA.

[27]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[28]  Yuichi Yoshida,et al.  Coverage centralities for temporal networks , 2015, The European Physical Journal B.

[29]  Afonso Ferreira,et al.  Computing Shortest, Fastest, and Foremost Journeys in Dynamic Networks , 2003, Int. J. Found. Comput. Sci..

[30]  Alfred O. Hero,et al.  Dynamic Stochastic Blockmodels: Statistical Models for Time-Evolving Networks , 2013, SBP.

[31]  Tanya Y. Berger-Wolf,et al.  Temporal Scale of Dynamic Networks , 2013 .

[32]  Cecilia Mascolo,et al.  Graph Metrics for Temporal Networks , 2013, ArXiv.

[33]  Eric Fleury,et al.  A unifying model for representing time-varying graphs , 2014, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[34]  Eric Fleury,et al.  Dynamic Contact Network Analysis in Hospital Wards , 2014, CompleNet.

[35]  F. Harary,et al.  The theory of graphs and its applications , 1963 .

[36]  Aristides Gionis,et al.  Finding Dynamic Dense Subgraphs , 2017, ACM Trans. Knowl. Discov. Data.

[37]  George Kampis,et al.  Elementary models of dynamic networks , 2013 .

[38]  T. Snijders The statistical evaluation of social network dynamics , 2001 .

[39]  Niloy Ganguly,et al.  Time series analysis of temporal networks , 2015, ArXiv.

[40]  Elisabeta Vergu,et al.  Characteristics of the spatio-temporal network of cattle movements in France over a 5-year period. , 2014, Preventive veterinary medicine.

[41]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[42]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[43]  Patrick Doreian,et al.  red.).Evolution of social networks , 1996 .

[44]  Eric Fleury,et al.  Non-altering time scales for aggregation of dynamic networks into series of graphs , 2015, CoNEXT.

[45]  Peter Fransson,et al.  From static to temporal network theory: Applications to functional brain connectivity , 2017, Network Neuroscience.

[46]  Miguel Romance,et al.  On eigenvector-like centralities for temporal networks: Discrete vs. continuous time scales , 2018, J. Comput. Appl. Math..

[47]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[48]  Cecilia Mascolo,et al.  Characterising temporal distance and reachability in mobile and online social networks , 2010, CCRV.

[49]  Carter T. Butts,et al.  4. A Relational Event Framework for Social Action , 2008 .

[50]  Clémence Magnien,et al.  Time evolution of the importance of nodes in dynamic networks , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[51]  Shashi Shekhar,et al.  Spatio-temporal Networks: Modeling and Algorithms , 2012 .

[52]  Matthieu Latapy,et al.  Revealing contact patterns among high-school students using maximal cliques in link streams , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[53]  Richard James,et al.  Temporal dynamics and network analysis , 2012 .

[54]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[55]  Tijana Milenkovic,et al.  Exploring the structure and function of temporal networks with dynamic graphlets , 2014, Bioinform..

[56]  Alex Borges Vieira,et al.  Time Centrality in Dynamic Complex Networks , 2015, Adv. Complex Syst..

[57]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[58]  James Hollway,et al.  Dynamic Network Actor Models: Investigating Coordination Ties through Time , 2017 .

[59]  Nicola Santoro,et al.  Time-Varying Graphs and Social Network Analysis: Temporal Indicators and Metrics , 2011, ArXiv.

[60]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[61]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Mohammed Shahadat Uddin,et al.  New Direction in Degree Centrality Measure: Towards a Time-Variant Approach , 2014, Int. J. Inf. Technol. Decis. Mak..

[63]  Vincent D. Blondel,et al.  A survey of results on mobile phone datasets analysis , 2015, EPJ Data Science.

[64]  Danielle S. Bassett,et al.  Dynamic graph metrics: Tutorial, toolbox, and tale , 2017, NeuroImage.

[65]  Petter Holme,et al.  Modern temporal network theory: a colloquium , 2015, The European Physical Journal B.

[66]  Vladimir Batagelj,et al.  An algebraic approach to temporal network analysis based on temporal quantities , 2015, Social Network Analysis and Mining.

[67]  Kon Shing Kenneth Chung,et al.  Topological analysis of longitudinal networks , 2013, 2013 46th Hawaii International Conference on System Sciences.

[68]  Jari Saramäki,et al.  Effects of time window size and placement on the structure of an aggregated communication network , 2012, EPJ Data Science.

[69]  Michael D. Iannacone,et al.  GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection , 2016, CISRC.

[70]  Jari Saramäki,et al.  Temporal motifs reveal homophily, gender-specific patterns and group talk in mobile communication networks , 2013, ArXiv.

[71]  Ciro Cattuto,et al.  Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach , 2013, PloS one.

[72]  Jari Saramäki,et al.  Temporal motifs in time-dependent networks , 2011, ArXiv.

[73]  Jari Saramäki,et al.  Exploring temporal networks with greedy walks , 2015, ArXiv.

[74]  Jari Saramäki,et al.  From calls to communities: a model for time-varying social networks , 2015, The European Physical Journal B.

[75]  Ciro Cattuto,et al.  Empirical temporal networks of face-to-face human interactions , 2013, The European Physical Journal Special Topics.

[76]  Robin Lamarche-Perrin,et al.  Degree-based Outlier Detection within IP Traffic Modelled as a Link Stream , 2019, ArXiv.

[77]  Vladimir Batagelj,et al.  Semirings for temporal network analysis , 2016, ArXiv.

[78]  Bernard Mans,et al.  Shortest, Fastest, and Foremost Broadcast in Dynamic Networks , 2012, Int. J. Found. Comput. Sci..

[79]  Romualdo Pastor-Satorras,et al.  Random walks on temporal networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Christoph Stadtfeld,et al.  Interactions, Actors, and Time: Dynamic Network Actor Models for Relational Events , 2017 .

[81]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.

[82]  Nicola Santoro,et al.  Time-varying graphs and dynamic networks , 2010, Int. J. Parallel Emergent Distributed Syst..

[83]  Patrick J. Wolfe,et al.  Point process modelling for directed interaction networks , 2010, ArXiv.

[84]  Matthieu Latapy,et al.  Basic notions for the analysis of large two-mode networks , 2008, Soc. Networks.

[85]  Virgílio A. F. Almeida,et al.  Quantifying Social and Opportunistic Behavior in Email Networks , 2009, Adv. Complex Syst..

[86]  Mathias Staudigl,et al.  Evolution of Social Networks , 2012, Eur. J. Oper. Res..

[87]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[88]  Ingo Scholtes,et al.  Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities , 2015, The European Physical Journal B.

[89]  Vincent Miele,et al.  Statistical clustering of temporal networks through a dynamic stochastic block model , 2015, 1506.07464.

[90]  Jean-Loup Guillaume,et al.  Temporal reachability graphs , 2012, Mobicom '12.

[91]  Jure Leskovec,et al.  Motifs in Temporal Networks , 2016, WSDM.

[92]  Sangho Kim,et al.  Spatio-temporal Networks , 2013, SpringerBriefs in Computer Science.

[93]  Jari Saramäki,et al.  Mapping temporal-network percolation to weighted, static event graphs , 2017, Scientific Reports.

[94]  Fabrice Rossi,et al.  Modelling time evolving interactions in networks through a non stationary extension of stochastic block models , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[95]  Timur Friedman,et al.  Characterizing pairwise inter-contact patterns in delay tolerant networks , 2007, Autonomics.

[96]  Eric Fleury,et al.  MultiAspect Graphs: Algebraic representation and algorithms , 2015, Algorithms.

[97]  Andrea Baronchelli,et al.  Quantifying the effect of temporal resolution on time-varying networks , 2012, Scientific Reports.

[98]  Jari Saramäki,et al.  Small But Slow World: How Network Topology and Burstiness Slow Down Spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  F. Stokman Evolution of social networks , 1997 .

[100]  Mason A. Porter,et al.  Eigenvector-Based Centrality Measures for Temporal Networks , 2015, Multiscale Model. Simul..

[101]  Eric Fleury,et al.  On MultiAspect graphs , 2014, Theor. Comput. Sci..

[102]  Michael D. Iannacone,et al.  GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection , 2016 .

[103]  Fabrice Rossi,et al.  Block modelling in dynamic networks with non-homogeneous Poisson processes and exact ICL , 2016, Social Network Analysis and Mining.

[104]  D. West Introduction to Graph Theory , 1995 .

[105]  Jari Saramäki,et al.  Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences , 2013, Proceedings of the National Academy of Sciences.

[106]  Yi Lu,et al.  Path Problems in Temporal Graphs , 2014, Proc. VLDB Endow..

[107]  V. Misra,et al.  Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans , 2014, PloS one.