Acquiring symbolic design optimization problem reformulation knowledge: On computable relationships between design syntax and semantics

..................................................................................................iii Acknowledgements......................................................................................iv List of Symbols...........................................................................................v Publication notes.........................................................................................vi Chapter 1. A Semantic – Syntactic Puzzle ..................................................................... 1 1.1 Motivation .......................................................................................................................... 2 1.1.1 Design methodology motivation.................................................................................. 3 1.1.2 Design theory motivation............................................................................................. 5 1.2 Aim..................................................................................................................................... 6 1.3 Objectives........................................................................................................................... 7 1.4 Research claims, contributions and significance................................................................ 7 1.4.1 Design methodology .................................................................................................... 7 1.4.2 Design theory............................................................................................................. 10 1.5 Thesis structure................................................................................................................. 11 Chapter 2. An Analogy Based Solution: Semantics from Syntax .............................. 13 2.1 Review of existing approaches: establishing behavior criteria......................................... 14 2.2 Approach used in this thesis ............................................................................................. 17 2.3 Analogies.......................................................................................................................... 20 2.3.1 Structural analogy ...................................................................................................... 21 2.3.2 A common representation form from the structural analogy ..................................... 23 2.4 Behavioral analogy........................................................................................................... 24 2.4.1 What does SVD do?................................................................................................... 24 2.4.2 What does SVD do in LSA? ...................................................................................... 26 2.4.3 What does SVD do in DIP? ....................................................................................... 28 2.5 Behavior characteristics from SVD, dimensionality reduction, similarity measurement. 29 2.5.1 Measure of “semantic similarity” in design representations...................................... 29 2.5.2 Dimensionality reduction and implicit pattern extraction.......................................... 30 2.5.3 Redundancy, matrix compression and explicit pattern extraction ............................. 31 2.5.4 Multiple and invariant patterns from a single data set: .............................................. 31 2.6 Summary .......................................................................................................................... 32

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[3]  D. Kalman A Singularly Valuable Decomposition: The SVD of a Matrix , 1996 .

[4]  Andrew Kusiak,et al.  Decomposition and Representation Methods in Mechanical Design , 1995 .

[5]  Andy Dong,et al.  The latent semantic approach to studying design team communication , 2005 .

[6]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[7]  Alice M. Agogino,et al.  Multiobjective Hydraulic Cylinder Design , 1988 .

[8]  Linden J. Ball,et al.  Spontaneous analogising in engineering design: a comparative analysis of experts and novices , 2004 .

[9]  Masaki Suwa,et al.  Unexpected discoveries and S-invention of design requirements , 2000 .

[10]  Andrew Gelsey,et al.  Using Modeling Knowledge to Guide Design Space Search , 1998, Artif. Intell..

[11]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[12]  Alice M. Agogino,et al.  Text analysis for constructing design representations , 1997, Artif. Intell. Eng..

[13]  Donald Favareau The Symbolic Species: The Co-evolution of Language and the Brain , 1998 .

[14]  Nigel Cross,et al.  Expertise in Design: an overview , 2004 .

[15]  Craig M. Rowles System integration analysis of a large commercial aircraft engine , 1999 .

[16]  Alex H. B. Duffy,et al.  A foundation for machine learning in design , 1998, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[17]  Jonathan Cagan,et al.  Activity Analysis: The Qualitative Analysis of Stationary Points for Optimal Reasoning , 1994, AAAI.

[18]  Donald A. Schön,et al.  Kinds of seeing and their functions in designing , 1992 .

[19]  David C. Brown,et al.  Dimensions of machine learning in design , 1998, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[20]  Jonathan Cagan,et al.  Learning from design experience in an agent-based design system , 2004 .

[21]  Jonathan Cagan,et al.  The A-Design approach to managing automated design synthesis , 2003 .

[22]  G. Strang The Fundamental Theorem of Linear Algebra , 1993 .

[23]  Herbert A. Simon,et al.  Artificial Intelligence: An Empirical Science , 1995, Artif. Intell..

[24]  Panos Y. Papalambros,et al.  A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems , 1997, Comput. Optim. Appl..

[25]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[26]  Daniel L. Schacter,et al.  Constructive memory: The ghosts of past and future , 2007, Nature.

[27]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[28]  Takahiro Murata,et al.  A transformation system for interactive reformulation of design optimization strategies , 1995, Proceedings 1995 10th Knowledge-Based Software Engineering Conference.

[29]  Haym Hirsh,et al.  Learning to set up numerical optimizations of engineering designs , 1998, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[30]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[31]  Simon Li,et al.  Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition , 2005, DAC 2004.

[32]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[33]  D. Schacter,et al.  Remembering the past to imagine the future: the prospective brain , 2007, Nature Reviews Neuroscience.

[34]  Panos Y. Papalambros,et al.  General framework for decomposition analysis in optimal design , 1993 .

[35]  Simon Li,et al.  Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition , 2005 .

[36]  Steven D. Eppinger,et al.  Integration analysis of product decompositions , 1994 .

[37]  Jonathan Cagan,et al.  Cognitive Investigations into Knowledge Representation in Engineering Design , 2004 .

[38]  Panos Y. Papalambros,et al.  Implementation of decomposition analysis in optimal design , 1993 .

[39]  Jonathan Cagan,et al.  A conceptual framework for combining artificial intelligence and optimization in engineering design , 1997 .

[40]  Udo Lindemann,et al.  Modeling the Multiple-Domain Matrix , 2009 .

[41]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[42]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[43]  Andrew Gelsey,et al.  The use of artificial intelligence to improve the numerical optimization of complex engineering designs , 1996 .

[44]  Li Liu,et al.  Robust singular value decomposition analysis of microarray data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Jeremy J. Michalek,et al.  Architectural layout design optimization , 2002 .

[46]  Steven D. Eppinger,et al.  Identifying Modular and Integrative Systems and Their Impact on Design Team Interactions , 2003 .

[47]  Xiaoyu Gu,et al.  Decision-Based Collaborative Optimization , 2002 .

[48]  Alex H. B. Duffy,et al.  The "What" and "How" of Learning in Design , 1997, IEEE Expert.