Historical comments on finite elements

[1]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[2]  Gabriel Kron,et al.  A Set of Principles to Interconnect the Solutions of Physical Systems , 1953 .

[3]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[4]  R. Varga,et al.  Piecewise Hermite interpolation in one and two variables with applications to partial differential equations , 1968 .

[5]  F. Bogner,et al.  The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .

[6]  Jim Douglas,et al.  Superconvergence for galerkin methods for the two point boundary problem via local projections , 1973 .

[7]  E. R. A. Oliveira Theoretical foundations of the finite element method , 1968 .

[8]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[9]  B. Irons,et al.  Engineering applications of numerical integration in stiffness methods. , 1966 .

[10]  I. Babuska,et al.  Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems. Interim report , 1975 .

[11]  P. G. Ciarlet,et al.  An 0 (h2) method for a non-smooth boundary value problem , 1968 .

[12]  J. H. Argyris Energy Theorems and Structural Analysis: A Generalized Discourse with Applications on Energy Principles of Structural Analysis Including the Effects of Temperature and Non‐Linear Stress‐Strain Relations Part I. General Theory , 1955 .

[13]  I. Babuska Error-bounds for finite element method , 1971 .

[14]  M. Schultz Rayleigh–Ritz–Galerkin Methods for Multidimensional Problems , 1969 .

[15]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[16]  D. Mchenry,et al.  A LATTICE ANALOGY FOR THE SOLUTION OF STRESS PROBLEMS. , 1943 .

[17]  R. W. McLay,et al.  Convergence of the Finite Element Method in the Theory of Elasticity , 1968 .

[18]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[19]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[20]  Jean-Pierre Aubin,et al.  Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .

[21]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[22]  O. C. Zienkiewicz,et al.  Curved, isoparametric, “quadrilateral” elements for finite element analysis , 1968 .

[23]  L. A. Rukhovets,et al.  Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary , 1969 .

[24]  P. Raviart,et al.  Hybrid Finite Element Methods for Solving 2nd Order Elliptic Equations , 1975 .

[25]  L. A. Rukhovets,et al.  Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary , 1968 .

[26]  J. Lions Problèmes aux limites en théorie des distributions , 1955 .

[27]  J. Cea Approximation variationnelle des problèmes aux limites , 1964 .

[28]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[29]  Frank Williamson,et al.  An historical note on the finite element method , 1980 .

[30]  Bruce M. Irons,et al.  A frontal solution program for finite element analysis , 1970 .

[31]  Martin H. Schultz,et al.  L^2 Error Bounds for the Rayleigh--Ritz--Galerkin Method , 1971 .

[32]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[33]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[34]  Bruce M. Irons,et al.  EXPERIENCE WITH THE PATCH TEST FOR CONVERGENCE OF FINITE ELEMENTS , 1972 .

[35]  Samuel Levy,et al.  Structural Analysis and Influence Coefficients for Delta Wings , 1953 .

[36]  Gabriel Kron,et al.  Tensor analysis of networks , 1967 .

[37]  K. Schellbach Probleme der Variationsrechnung. , 1851 .

[38]  G. Strang VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .

[39]  J. Bramble,et al.  Triangular elements in the finite element method , 1970 .

[40]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[41]  J. Z. Zhu,et al.  The finite element method , 1977 .

[42]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[43]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[44]  J. Tinsley Oden,et al.  A GENERAL THEORY OF FINITE ELEMENTS II. APPLICATIONS , 1969 .

[45]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[46]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[47]  T. Dupont $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations , 1973 .

[48]  J. Nitsche,et al.  Lineare spline-funktionen und die methoden von ritz für elliptische randwertprobleme , 1970 .

[49]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[50]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[51]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[52]  R. Clough The Finite Element Method in Plane Stress Analysis , 1960 .

[53]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .