Method of Lines Transpose: Energy Gradient Flows Using Direct Operator Inversion for Phase-Field Models
暂无分享,去创建一个
[1] Eric M. Wolf,et al. Method of lines transpose: an efficient A-stable solver for wave propagation , 2015, 1511.01013.
[2] R. Alexander. Diagonally implicit runge-kutta methods for stiff odes , 1977 .
[3] Matthew F. Causley,et al. Method of lines transpose: An implicit solution to the wave equation , 2014, Math. Comput..
[4] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[5] Erich Rothe,et al. Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben , 1930 .
[6] K. Promislow,et al. An Overview of Network Bifurcations in the Functionalized Cahn-Hilliard Free Energy , 2015 .
[7] Matthew F. Causley,et al. Method of Lines Transpose: High Order L-Stable O(N) Schemes for Parabolic Equations Using Successive Convolution , 2015, SIAM J. Numer. Anal..
[8] Xiaofeng Yang,et al. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .
[9] L. Greengard,et al. Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .
[10] Graeme Fairweather,et al. A New Computational Procedure for A.D.I. Methods , 1967 .
[11] Keith Promislow,et al. High accuracy solutions to energy gradient flows from material science models , 2014, J. Comput. Phys..
[12] K. Promislow,et al. On the unconditionally gradient stable scheme for the Cahn-Hilliard equation and its implementation with Fourier method , 2013 .
[13] Jingfang Huang,et al. Krylov deferred correction accelerated method of lines transpose for parabolic problems , 2008, J. Comput. Phys..
[14] D. J. Eyre,et al. An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .
[15] Long-Qing Chen. Phase-Field Models for Microstructure Evolution , 2002 .
[16] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .
[17] Bryan D. Quaife,et al. Fast integral equation methods for the modified Helmholtz equation , 2010, J. Comput. Phys..
[18] Fei Liu,et al. Stabilized semi‐implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations , 2015 .
[19] R. V. KoRN. On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 2004 .
[20] Mark Willoughby. High-order time-adaptive numerical methods for the Allen-Cahn and Cahn-Hilliard equations , 2011 .
[21] Colin B. Macdonald,et al. Revisionist integral deferred correction with adaptive step-size control , 2013, 1310.6331.
[22] A. Iserles. A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .
[23] Matthew F. Causley,et al. Higher Order A-Stable Schemes for the Wave Equation Using a Successive Convolution Approach , 2014, SIAM J. Numer. Anal..