The Kählerian geometry of quantum model order reduction with applications in the simulation of open quantum systems

This article presents numerical techniques for simulating high-temperature and non-equilibrium quantum spin systems that are continuously measured and controlled. The notion of a “spin system” is broadly conceived, to encompass test masses as the limiting case of large-j spins, and in general the systems simulated are spatially inhomogeneous. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into a informatically equivalent continuous measurement and control processes, and finally, projection of the trajectory onto a Kählerian state-space manifold having reduced dimensionality and possessing a Kähler potential of multilinear (i.e., product-sum) functional form; these state-spaces can be regarded as ruled algebraic varieties. To provide a unifying geometric context for this technique, the sectional curvature of ruled state-spaces is analyzed, and proved to be non-positive upon all sections that contain a rule. It is further shown that ruled state-spaces include the Slater determinant wave-functions of quantum chemistry as a special case and that these Slater determinant manifolds possess a Kähler-Einstein metric. It is suggested that the Riemannian curvature properties of ruled state-spaces generically account for the fidelity, efficiency, and robustness of projective trajectory simulation on these state-spaces. The resulting formalism is used to construct a positive P-representation for the thermal density matrix, and then to prove a formal equivalence between Caves’ amplifier noise limit and the standard quantum limit in test-mass monitoring. Single-spin detection by magnetic resonance force microscopy (MRFM) is then simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise, to all orders, in excellent agreement with experimental results. Then a larger-scale spin-dust model is simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low-dimensionality Kähler state-space manifolds is demonstrated. Finally, a method for accomplishing public key exchange via spin-dust simulations is demonstrated; this method establishes the geometric equivalence of a set of problems in physics, engineering, and information theory.

[1]  F. Wilczek,et al.  Quantum Field Theory , 1998, Compendium of Quantum Physics.

[2]  Abhay Ashtekar,et al.  Geometry of quantum mechanics , 2008 .

[3]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[6]  Andrei Moroianu,et al.  Lectures on Kähler geometry , 2007 .

[7]  I. García-Mata,et al.  Phase space contraction and quantum operations , 2005, quant-ph/0508190.

[8]  Reginaldo Palazzo,et al.  Geometrically uniform hyperbolic codes , 2005 .

[9]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[10]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[11]  R. Friesner Ab initio quantum chemistry: methodology and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Martin J. Mohlenkamp,et al.  Trigonometric identities and sums of separable functions , 2005 .

[13]  K. Burke,et al.  Time-dependent density functional theory: past, present, and future. , 2004, The Journal of chemical physics.

[14]  Christian Lubich,et al.  On variational approximations in quantum molecular dynamics , 2004, Math. Comput..

[15]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[16]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[17]  Nicola Sansonetto,et al.  Remarks on geometric quantum mechanics , 2004 .

[18]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[19]  G. Vidal,et al.  A pr 2 00 4 Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2022 .

[20]  G. Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2003, Physical review letters.

[21]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[22]  T. Frankel The geometry of physics : an introduction , 2004 .

[23]  Torres del Castillo,et al.  3-D Spinors, Spin-Weighted Functions and their Applications , 2003 .

[24]  Reginaldo Palazzo Júnior,et al.  Performance Analysis of M-PSK Signal Constellations in Riemannian Varieties , 2003, AAECC.

[25]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[26]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[27]  Reginaldo Palazzo Júnior,et al.  A new approach to the design of digital communication systems , 2003, Algebraic Coding Theory and Information Theory.

[28]  Michal Rewienski,et al.  A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems , 2003 .

[29]  K. Capelle A bird's-eye view of density-functional theory , 2002, cond-mat/0211443.

[30]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[32]  Richard Thompson,et al.  Quantum jumps in singly ionized magnesium , 2002 .

[33]  M. Sentís Quantum theory of open systems , 2002 .

[34]  Gerd Fischer,et al.  Ruled Varieties: An Introduction to Algebraic Differential Geometry , 2001 .

[35]  D. Henderson,et al.  Crocheting the hyperbolic plane , 2001 .

[36]  A. Raab,et al.  On the Dirac–Frenkel/McLachlan variational principle , 2000 .

[37]  Stephen L. Adler,et al.  Derivation of the Lindblad generator structure by use of the Itô stochastic calculus , 2000 .

[38]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[39]  Joseph L. Garbini,et al.  Thermal tuning of a fiber-optic interferometer for maximum sensitivity , 1999 .

[40]  C. Schubert,et al.  A Closed Formula for the Riemann Normal Coordinate Expansion , 1997, gr-qc/9712092.

[41]  A. Ashtekar,et al.  Geometrical Formulation of Quantum Mechanics , 1997, gr-qc/9706069.

[42]  Ian Percival,et al.  Quantum State Diffusion , 1998 .

[43]  Jürgen Jost,et al.  Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .

[44]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[45]  Bo-Yu Hou,et al.  Differential geometry for physicists , 1997 .

[46]  Nicolas Gisin,et al.  Unravellings of the master equation and the emergence of a classical world , 1996 .

[47]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[48]  Ahmed K. Noor,et al.  Recent Advances and Applications of Reduction Methods , 1994 .

[49]  J. Zittartz,et al.  Matrix Product Ground States for One-Dimensional Spin-1 Quantum Antiferromagnets , 1993, cond-mat/9307028.

[50]  H. Carmichael An open systems approach to quantum optics , 1993 .

[51]  M. B. Menskii,et al.  Continuous quantum measurements and path integrals , 1993 .

[52]  Daniel Martin Manifold Theory: An Introduction for Mathematical Physicists , 1991 .

[53]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[54]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[55]  M. Yor DIFFUSIONS, MARKOV PROCESSES AND MARTINGALES: Volume 2: Itô Calculus , 1989 .

[56]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[57]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[58]  Caves Quantum mechanics of measurements distributed in time. II. Connections among formulations. , 1987, Physical review. D, Particles and fields.

[59]  Walls,et al.  Quantum jumps in atomic systems. , 1988, Physical review. A, General physics.

[60]  Wendell H. Fleming,et al.  Differential geometry of complex vector bundles , 1987 .

[61]  C. Reid,et al.  An Interview with George B. Dantzig: The Father of Linear Programming , 1986 .

[62]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[63]  Caves Quantum mechanics of measurements distributed in time. A path-integral formulation. , 1986, Physical review. D, Particles and fields.

[64]  D. Friedan,et al.  Nonlinear models in 2 + ε dimensions☆ , 1985 .

[65]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[66]  R. Feynman Simulating physics with computers , 1999 .

[67]  Ahmed K. Noor,et al.  On making large nonlinear problems small , 1982 .

[68]  A. Messiah Quantum Mechanics, Volume II , 1981 .

[69]  Carl Friedrich Gauss Disquisitiones generales circa superficies curvas , 1981 .

[70]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[71]  Nicholas F. Morris,et al.  The use of modal superposition in nonlinear dynamics , 1977 .

[72]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[73]  Edward J. Flaherty,et al.  Hermitian and Kahlerian geometry in relativity , 1975 .

[74]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[75]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[76]  K. Kraus General state changes in quantum theory , 1971 .

[77]  S. Feneuille,et al.  THEORY OF COMPLEX SPECTRA. , 1971 .

[78]  S. Goldberg,et al.  Holomorphic bisectional curvature , 1967 .

[79]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[80]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[81]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .

[82]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[83]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[84]  J. Frenkel,et al.  Wave mechanics: Advanced general theory , 1934 .

[85]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[86]  I. Holopainen Riemannian Geometry , 1927, Nature.