Geology and geochemistry of Iberian roofing slates

Abstract This article analyzes the geochemical and mineralogical composition of the roofing slate deposits of the Iberian Peninsula. Most roofing slate deposits are found on Middle and Upper Ordovician terrains, although there are also deposits in the Ediacaran, Cambrian and Devonian terrains. Samples of slate were taken in most of the active quarries of the Iberian Peninsula, and being analyzed by X-ray Diffraction and Fluorescence. Each lithotect or slate productive formation has its own specific proportions of major and trace elements, being able to differentiate between them by using these relationships. This fact is particularly interesting in geological exploration and prospecting, as it allows knowing exactly the slate lithotect, and also for restoration work in the architectural heritage, due to the ability of identifying the source of the original slate tiles.

[1]  C. Limarino,et al.  Petrology and geochemistry of Carboniferous siliciclastics from the Argentine Frontal Cordillera: A test of methods for interpreting provenance and tectonic setting , 2012 .

[2]  R. Wintsch,et al.  Differential Mobility of Elements in Burial Diagenesis of Siliciclastic Rocks , 1994 .

[3]  I. Armenteros,et al.  Geochemistry and petrology of recycled orogen-derived sediments: a case study from Upper Precambrian siliciclastic rocks of the Central Iberian Zone, Iberian Massif, Spain , 1997 .

[4]  R. Frei,et al.  Geochemistry of Precambrian sedimentary rocks used to solve stratigraphical problems: An example from the Neoproterozoic Volta basin, Ghana , 2010 .

[5]  B. Lorenzo Nuevos datos geológicos y cartográficos sobre el flanco Sur del Sinclinorio de Truchas (Ourense-León, NW de España) , 1989 .

[6]  Gc Allen,et al.  7th Euroseminar on Microscopy Applied to Building Materials , 1999 .

[7]  Victor Cárdenes,et al.  Influence of Chemical-Mineralogical Composition on the Color and Brightness of Iberian Roofing Slates , 2012 .

[8]  P. Montero,et al.  Ediacaran to Lower Ordovician age for rocks ascribed to the Schist-Graywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U-Pb geochronology , 2012 .

[9]  J. Bartolí La sucesión paleozoica en el sinforme de la Codosera-Puebla de Obando (provincias de Cáceres y Badajoz, SO de España , 1992 .

[10]  G. Gillman Charged clays: An environmental solution , 2011 .

[11]  A. Marcos Las series del Paleozoico Inferior y la estructura herciniana del Occidente de Asturias (NW. de España) , 1973 .

[12]  E. Bernárdez,et al.  Revisión bioestratigráfica de las pizarras del Ordovícico Medio en el noroeste de España (zonas Cantábrica, Asturoccidental-leonesa y Centroibérica septentrional) , 1999 .

[13]  H. Rollinson Using Geochemical Data: Evaluation, Presentation, Interpretation , 1993 .

[14]  G. Gutiérrez-Alonso,et al.  Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone) , 2008 .

[15]  F. Spear Metamorphic phase equilibria and pressure-temperature-time paths , 1993 .

[16]  R. Bustin,et al.  Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin , 2009 .

[17]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[18]  Fernando Gómez-Fernández,et al.  Quantitative mineralogical analysis of Spanish roofing slates using the Rietveld method and X-ray powder diffraction data , 2003 .

[19]  S. Taylor,et al.  Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations , 1990 .

[20]  Joan A. Walsh Identification of the provenance of natural stone used as roofing material in Scotland , 2006 .

[21]  Emilio Galán,et al.  A methodology for locating the original quarries used for constructing historical buildings: application to Málaga Cathedral, Spain , 1999 .

[22]  R. L. Cullers Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A. , 1988 .

[23]  J. Dostal,et al.  Comparative evolution of the Iapetus and Rheic Oceans: A North America perspective , 2010 .

[24]  V. Cárdenes,et al.  Iconography : Color characterization of roofing slates from the Iberian Peninsula for restoration purposes , 2011 .

[25]  C. Vale,et al.  Rare earth elements in coastal sediments of the northern Galician shelf: Influence of geological features , 2012 .

[26]  J. Taboada,et al.  Mineralogía y microestructura de la pizarra de techar: comportamiento termoóptico y fisibilidad , 1998 .

[27]  Javier García-Guinea,et al.  SPANISH ROOFING SLATE DEPOSITS , 1997 .

[28]  D. J. Fettes,et al.  Metamorphic rocks : a classification and glossary of terms , 2007 .

[29]  J. Schoonmaker,et al.  7.01 – Chemical Composition and Mineralogy of Marine Sediments , 2003 .

[30]  K. Milliken Late Diagenesis and Mass Transfer in Sandstone-Shale Sequences , 2003 .