In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy

[1]  Jun Sun,et al.  In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy , 2012 .

[2]  K. Hirahara,et al.  Carbon Nanotube Torsional Actuator Based on Transition between Flattened and Tubular States , 2012 .

[3]  L. Vandersypen,et al.  Lattice expansion in seamless bilayer graphene constrictions at high bias. , 2012, Nano letters.

[4]  D. Golberg,et al.  Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations. , 2012, Physical review letters.

[5]  T. Xu,et al.  Investment casting of carbon tubular structures , 2012 .

[6]  Ze Zhang,et al.  Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. , 2012, Nano letters.

[7]  Jing Zhu,et al.  Electron-beam-induced elastic-plastic transition in Si nanowires. , 2012, Nano letters.

[8]  K. Hirahara,et al.  Nanotorsional actuator using transition between flattened and tubular states in carbon nanotubes , 2012 .

[9]  Changfeng Chen,et al.  Enhancing interwall load transfer by vacancy defects in carbon nanotubes , 2012 .

[10]  H. Zeng,et al.  Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope , 2012, Advanced materials.

[11]  A. Zewail,et al.  Subparticle Ultrafast Spectrum Imaging in 4D Electron Microscopy , 2012, Science.

[12]  Jun Sun,et al.  Approaching the ideal elastic limit of metallic glasses , 2012, Nature Communications.

[13]  E. Ma,et al.  A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum. , 2011, Nature communications.

[14]  S. Washburn,et al.  Direct measurement of the friction between and shear moduli of shells of carbon nanotubes. , 2011, Physical review letters.

[15]  Y. Bando,et al.  The electrical delivery of a sublimable II-VI compound by vapor transport in carbon nanotubes , 2011 .

[16]  Jing Zhu,et al.  Electron microscopy and in situ testing of mechanical deformation of carbon nanotubes. , 2011, Micron.

[17]  Hongzhong Liu,et al.  In situ TEM study on crack propagation in nanoscale Au thin films , 2011 .

[18]  Chang Liu,et al.  Mechanical properties of bamboo-like boron nitride nanotubes by in situ TEM and MD simulations: strengthening effect of interlocked joint interfaces. , 2011, ACS nano.

[19]  Ze Zhang,et al.  Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. , 2011, Nano letters.

[20]  Yingyan Zhang,et al.  Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression , 2011 .

[21]  Jiaqi Huang,et al.  TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes , 2011 .

[22]  Y. Bando,et al.  Superstrong Low‐Resistant Carbon Nanotube–Carbide–Metal Nanocontacts , 2010, Advanced materials.

[23]  Y. Bando,et al.  Tensile Tests on Individual Multi‐Walled Boron Nitride Nanotubes , 2010, Advanced materials.

[24]  Y. Bando,et al.  Tensile Tests on Individual Single‐Walled Carbon Nanotubes: Linking Nanotube Strength with Its Defects , 2010, Advanced materials.

[25]  Ze Zhang,et al.  In situ observation of dislocation behavior in nanometer grains. , 2010, Physical review letters.

[26]  T. Dumitricǎ,et al.  Edge-mediated dislocation processes in multishell carbon nano-onions? , 2010, Physical review letters.

[27]  Tienchong Chang,et al.  Temperature-induced reversible dominoes in carbon nanotubes. , 2010, Nano letters.

[28]  F. Wei,et al.  Reversible high-pressure carbon nanotube vessel , 2010 .

[29]  Kun Zheng,et al.  Electron-beam-assisted superplastic shaping of nanoscale amorphous silica , 2010, Nature communications.

[30]  Dmitri Golberg,et al.  Boron nitride nanotubes and nanosheets. , 2010, ACS nano.

[31]  C. Wang,et al.  Recent Studies on Buckling of Carbon Nanotubes , 2010 .

[32]  A. Zewail Four-Dimensional Electron Microscopy , 2010, Science.

[33]  Jun Sun,et al.  Strong crystal size effect on deformation twinning , 2010, Nature.

[34]  Y. Bando,et al.  Interface Dynamic Behavior Between a Carbon Nanotube and Metal Electrode , 2010, Advanced materials.

[35]  F. Banhart,et al.  Multibranched Junctions of Carbon Nanotubes via Cobalt Particles , 2009 .

[36]  F. Banhart Interactions between metals and carbon nanotubes: at the interface between old and new materials. , 2009, Nanoscale.

[37]  F. Banhart,et al.  Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes. , 2009, ACS nano.

[38]  Xiaodong Han,et al.  Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. , 2009, Nano letters.

[39]  Bobby G. Sumpter,et al.  Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts , 2009, Proceedings of the National Academy of Sciences.

[40]  Tienchong Chang Dominoes in carbon nanotubes. , 2008, Physical review letters.

[41]  A. Krasheninnikov,et al.  Plastic deformation of single nanometer-sized crystals. , 2008, Physical review letters.

[42]  Mark A. Locascio,et al.  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. , 2008, Nature nanotechnology.

[43]  Wanlin Guo,et al.  Mechanism for superelongation of carbon nanotubes at high temperatures. , 2008, Physical review letters.

[44]  Andrew M Minor,et al.  Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. , 2008, Nature materials.

[45]  K. Jensen,et al.  Buckling and kinking force measurements on individual multiwalled carbon nanotubes , 2007 .

[46]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[47]  X. Han,et al.  Low‐Temperature In Situ Large‐Strain Plasticity of Silicon Nanowires , 2007, Advanced Materials.

[48]  Wanlin Guo,et al.  Reassembly of single-walled carbon nanotubes into hybrid multilayered nanostructures inside nanotube extruders , 2007 .

[49]  Mauricio Terrones,et al.  In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. , 2007, Nature nanotechnology.

[50]  Xiao-Feng Wang,et al.  Reversible mechanical bistability of carbon nanotubes under radial compression , 2007 .

[51]  R. Superfine,et al.  Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device. , 2007, Nature nanotechnology.

[52]  Dmitri Golberg,et al.  Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope , 2007 .

[53]  K. Zheng,et al.  Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. , 2007, Nano letters.

[54]  F. Banhart,et al.  Elastic deformation of nanometer-sized metal crystals in graphitic shells , 2006 .

[55]  A. Krasheninnikov,et al.  Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations , 2006 .

[56]  R. Superfine,et al.  Experimental measurement of single-wall carbon nanotube torsional properties. , 2006, Physical review letters.

[57]  P. Ajayan,et al.  Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders , 2006, Science.

[58]  Xingming Guo,et al.  Reversible mechanical bistability of single-walled carbon nanotubes under axial strain , 2006 .

[59]  Yusheng Zhao,et al.  MATERIALS SCIENCE: High-Pressure Microscopy. , 2006, Science.

[60]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Wanlin Guo,et al.  Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model , 2005 .

[62]  F. Banhart,et al.  The Deformation of Single, Nanometer‐Sized Metal Crystals in Graphitic Shells , 2005 .

[63]  Wanlin Guo,et al.  Formation of sp(3) bonding in nanoindented carbon nanotubes and graphite. , 2004, Physical review letters.

[64]  Wanlin Guo,et al.  Giant axial electrostrictive deformation in carbon nanotubes. , 2003, Physical review letters.

[65]  Charlier,et al.  Dynamic behavior of nickel atoms in graphitic networks , 2000, Physical review letters.

[66]  F. Banhart,et al.  Irradiation effects in carbon nanostructures , 1999 .

[67]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[68]  F. Banhart,et al.  LOW-PRESSURE TRANSFORMATION OF GRAPHITE TO DIAMOND UNDER IRRADIATION , 1999 .

[69]  P. Ajayan,et al.  The migration of metal atoms through carbon onions , 1998 .

[70]  F. Banhart,et al.  RADIATION-INDUCED TRANSFORMATION OF GRAPHITE TO DIAMOND , 1997 .

[71]  Pulickel M. Ajayan,et al.  The formation, annealing and self-compression of carbon onions under electron irradiation , 1997 .

[72]  F. Banhart The transformation of graphitic onions to diamond under electron irradiation , 1997 .

[73]  P. Ajayan,et al.  Carbon onions as nanoscopic pressure cells for diamond formation , 1996, Nature.

[74]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[75]  D. Ugarte Curling and closure of graphitic networks under electron-beam irradiation , 1992, Nature.