Semiparametric model building for regression models with time-varying parameters

This paper considers the problem of semiparametric model building for linear regression models with potentially time-varying coefficients. By allowing the response variable and explanatory variables be jointly a nonstationary process, the proposed methods are widely applicable to nonstationary and dependent observations. We propose a local linear shrinkage method that can simultaneously achieve parameter estimation and variable selection. Its selection consistency and the favorable oracle property are established. Due to the fear of losing efficiency, an information criterion is further proposed for distinguishing between time-varying and time-constant components. Numerical examples are presented to illustrate the proposed methods.

[1]  P. Robinson,et al.  Nonparametric Estimation of Time-Varying Parameters , 1989 .

[2]  P. D. Souza,et al.  15 Speech recognition using LPC distance measures , 1985 .

[3]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.

[4]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[5]  Wei Biao Wu,et al.  Inference of time-varying regression models , 2012, 1208.3552.

[6]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[7]  Xiaogu Zheng,et al.  Trend Detection in Regional-Mean Temperature Series: Maximum, Minimum, Mean, Diurnal Range, and SST , 1997 .

[8]  Xiaogu Zheng,et al.  Structural Time Series Models and Trend Detection in Global and Regional Temperature Series , 1999 .

[9]  Hao Helen Zhang,et al.  Adaptive Lasso for Cox's proportional hazards model , 2007 .

[10]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[11]  Eva Ferreira,et al.  Nonparametric estimation of time varying parameters under shape restrictions , 2005 .

[12]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[13]  Zhongyi Zhu,et al.  A UNIFIED VARIABLE SELECTION APPROACH FOR VARYING COEFFICIENT MODELS , 2012 .

[14]  Yuhong Yang,et al.  Nonparametric Regression with Correlated Errors , 2001 .

[15]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[16]  Jianqing Fan,et al.  New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .

[17]  S. Vladimir,et al.  Confidence estimation of the covariance function of stationary and locally stationary processes , 2004 .

[18]  S. Mallat,et al.  Adaptive covariance estimation of locally stationary processes , 1998 .

[19]  Jianqing Fan,et al.  Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models , 2000 .

[20]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[21]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[22]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[23]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[24]  S. Philander,et al.  Secular Changes of Annual and Interannual Variability in the Tropics during the Past Century , 1995 .

[25]  Jiti Gao,et al.  Semiparametric Estimation and Testing of the Trend of Temperature Series , 2006 .

[26]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[27]  P. Priouret,et al.  On recursive estimation for time varying autoregressive processes , 2005, math/0603047.

[28]  Jianhua Z. Huang,et al.  Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.

[29]  H. Ombao,et al.  SLEX Analysis of Multivariate Nonstationary Time Series , 2005 .

[30]  M. Priestley Evolutionary Spectra and Non‐Stationary Processes , 1965 .

[31]  Yingcun Xia,et al.  Shrinkage Estimation of the Varying Coefficient Model , 2008 .

[32]  P. Jones,et al.  An Extension of the TahitiDarwin Southern Oscillation Index , 1987 .

[33]  Jianqing Fan,et al.  Profile likelihood inferences on semiparametric varying-coefficient partially linear models , 2005 .

[34]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[35]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[36]  Yingcun Xia,et al.  Efficient estimation for semivarying‐coefficient models , 2004 .

[37]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[38]  D. T. Jensen,et al.  Assessment of the influence of ENSO on annual global air temperatures , 1995 .

[39]  Zhengyan Lin,et al.  Variable selection in partially time-varying coefficient models , 2009 .

[40]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[42]  Bin Chen,et al.  Testing for Smooth Structural Changes in Time Series Models via Nonparametric Regression , 2012 .

[43]  Zongwu Cai,et al.  Trending time-varying coefficient time series models with serially correlated errors , 2007 .

[44]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[45]  Kevin Q. Wang Asset Pricing with Conditioning Information: A New Test , 2003 .

[46]  Benjamin F. Jones,et al.  Temperature Shocks and Economic Growth: Evidence from the Last Half Century , 2012 .

[47]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[48]  A. Antoniadis Wavelets in statistics: A review , 1997 .

[49]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[50]  Michael H. Neumann,et al.  Nonlinear Wavelet Estimation of Time-Varying Autoregressive Processes , 1999 .

[51]  Yuedong Wang Smoothing Spline Models with Correlated Random Errors , 1998 .

[52]  Wei Biao Wu,et al.  Inference of trends in time series , 2007 .

[53]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[54]  R. Dahlhaus On the Kullback-Leibler information divergence of locally stationary processes , 1996 .

[55]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[56]  Qi Li,et al.  Efficient estimation of a semiparametric partially linear varying coefficient model , 2005, math/0504510.

[57]  Ming-Yen Cheng,et al.  Statistical Estimation in Generalized Multiparameter Likelihood Models , 2009 .

[58]  Wei Biao Wu,et al.  Testing parametric assumptions of trends of a nonstationary time series , 2011 .

[59]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[60]  Yuri I. Abramovich,et al.  Order Estimation and Discrimination Between Stationary and Time-Varying (TVAR) Autoregressive Models , 2007, IEEE Transactions on Signal Processing.

[61]  P. Robinson,et al.  Time-Varying Nonlinear Regression , 1991 .

[62]  G. Nason,et al.  Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum , 2000 .

[63]  D. Hunter,et al.  Variable Selection using MM Algorithms. , 2005, Annals of statistics.

[64]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[65]  R. Dahlhaus,et al.  Semiparametric estimation by model selection for locally stationary processes , 2006 .

[66]  Zhou Zhou,et al.  Simultaneous inference of linear models with time varying coefficients , 2010 .

[67]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[68]  Lan Xue,et al.  Variable Selection in High-dimensional Varying-coefficient Models with Global Optimality , 2012, J. Mach. Learn. Res..

[69]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[70]  Xin-Yuan Song,et al.  Local Polynomial Fitting in Semivarying Coefficient Model , 2002 .

[71]  H. Tong,et al.  K-stationarity and wavelets , 1998 .

[72]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[73]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .

[74]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.