Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers

Dielectric elastomers are used for electromechanical energy conversion in actuators and in harvesting mechanical energy from renewable sources. The electrical breakdown strength determines the limit of a dielectric elastomer for its use in actuators and energy harvesters. We report two experimental configurations for the measurement of the stretch dependence of the electrical breakdown strength of dielectric elastomers, and compare the electrical breakdown fields for compliant and rigid electrodes on the elastomer. We show that the electrode configuration strongly influences the electrical breakdown field strength. Further, we compare the stretch dependent dielectric function and breakdown of the acrylic elastomer VHB 4910 TM from 3M TM , and of the natural rubber ZruElast TM A1040 TM from Zrunek rubber technology. While the dielectric permittivity of VHB decreases with increasing stretch ratio, the dielectric constant of rubber is insensitive to stretch. Our results suggest natural rubber as a versatile material for dielectric elastomer energy harvesting. (Some figures may appear in colour only in the online journal)

[1]  R. Pelrine,et al.  Actuation Response of Polyacrylate Dielectric Elastomers , 2003 .

[2]  Zhigang Suo,et al.  Method for measuring energy generation and efficiency of dielectric elastomer generators , 2011 .

[3]  H. Ragusch,et al.  Electrical breakdown in soft elastomers: Stiffness dependence in un-pre-stretched elastomers , 2010, 2010 10th IEEE International Conference on Solid Dielectrics.

[4]  Skandar Basrour,et al.  Dielectric polymer: scavenging energy from human motion , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  Hualing Chen,et al.  Temperature dependence of the dielectric constant of acrylic dielectric elastomer , 2012, Applied Physics A.

[6]  Zhigang Suo,et al.  The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer , 2012 .

[7]  D. De Rossi,et al.  Stretching Dielectric Elastomer Performance , 2010, Science.

[8]  K. Stark,et al.  Electric Strength of Irradiated Polythene , 1955, Nature.

[9]  Richard W. Jones,et al.  Modeling and experimental verification of a dielectric polymer energy scavenging cycle , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  I. Anderson,et al.  Soft generators using dielectric elastomers , 2011 .

[11]  Iain A. Anderson,et al.  An integrated, self-priming dielectric elastomer generator , 2010 .

[12]  Zhigang Suo,et al.  Dielectric Elastomer Generators: How Much Energy Can Be Converted? , 2011, IEEE/ASME Transactions on Mechatronics.

[13]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[14]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[15]  Zhigang Suo,et al.  Dielectric elastomer generator with equi-biaxial mechanical loading for energy harvesting , 2013, Smart Structures.

[16]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[17]  Ron Pelrine,et al.  Dielectric elastomers: generator mode fundamentals and applications , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Guillaume Ardoise,et al.  Standing wave tube electro active polymer wave energy converter , 2012, Smart Structures.

[19]  Ron Pelrine,et al.  Dielectric elastomers: Stretching the capabilities of energy harvesting , 2012 .

[20]  Kimball A. Milton,et al.  Repulsive Casimir and Casimir–Polder forces , 2012, 1202.6415.

[21]  Iain A. Anderson,et al.  Self-priming dielectric elastomer generators , 2010 .

[22]  Zhigang Suo,et al.  Maximal energy that can be converted by a dielectric elastomer generator , 2009 .

[23]  Junhua Qiang,et al.  A model for conditional polarization of the actuation enhancement of a dielectric elastomer , 2012 .