An Unbiased Measure of Realized Variance

The realized variance (RV) is known to be biased because intraday returns are contaminated with market microstructure noise, in particular if intraday returns are sampled at high frequencies. In this paper, we characterize the bias under a general specification for the market microstructure noise, where the noise may be autocorrelated and need not be independent of the latent price process. Within this framework, we propose a simple Newey-West type correction of the RV that yields an unbiased measure of volatility, and we characterize the optimal unbiased RV in terms of the mean squared error criterion. Our empirical analysis of the 30 stocks of the Dow Jones Industrial Average index shows the necessity of our general assumptions about the noise process. Further, the empirical results show that the modified RV is unbiased even if intraday returns are sampled every second.

[1]  W. Wasserfallen,et al.  The behavior of intra-daily exchange rates , 1985 .

[2]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[3]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[4]  K. French,et al.  Expected stock returns and volatility , 1987 .

[5]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[6]  Donald W. K. Andrews,et al.  An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1992 .

[7]  Dean P. Foster,et al.  Continuous Record Asymptotics for Rolling Sample Variance Estimators , 1994 .

[8]  K. West Another Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1995 .

[9]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[10]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[11]  F. Diebold,et al.  The Distribution of Exchange Rate Volatility , 1999 .

[12]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[13]  Nicholas M. Kiefer,et al.  Simple Robust Testing of Regression Hypotheses , 2000 .

[14]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[15]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[16]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[17]  Neil Shephard,et al.  Estimating quadratic variation using realised volatility , 2001 .

[18]  M. Dacorogna,et al.  Consistent High-Precision Volatility from High-Frequency Data , 2001 .

[19]  N. Meddahi,et al.  A theoretical comparison between integrated and realized volatility , 2002 .

[20]  Eric Ghysels,et al.  Rolling-Sample Volatility Estimators , 2002 .

[21]  B. Bollen,et al.  Estimating Daily Volatility in Financial Markets Utilizing Intraday Data , 2002 .

[22]  Maria Elvira Mancino,et al.  Fourier series method for measurement of multivariate volatilities , 2002, Finance Stochastics.

[23]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[24]  E. Barucci,et al.  On measuring volatility of diffusion processes with high frequency data , 2002 .

[25]  T. Bollerslev,et al.  Analytical Evaluation of Volatility Forecasts , 2002 .

[26]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[27]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[28]  Peter Reinhard Hansen,et al.  Consistent Preordering with an Estimated Criterion Function, with an Application to the Evaluation and Comparison of Volatility Models , 2003 .

[29]  A. Mahajan Misclassi fi ed Regressors in Binary Choice Models ∗ , 2004 .

[30]  R. Oomen Modelling Realized Variance when Returns are Serially Correlated , 2004 .

[31]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[32]  Peter Reinhard Hansen,et al.  Realized Variance and IID Market Microstructure Noise , 2004 .

[33]  Jeffrey R. Russell,et al.  Microstructure noise, realized volatility, and optimal sampling , 2004 .

[34]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .